[v1] Add support for ShareGPT format. (#9486)

This commit is contained in:
Yinlei Sun 2025-11-18 13:44:08 +08:00 committed by GitHub
parent d4e120423d
commit 45f0437a14
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 184 additions and 1 deletions

View File

@ -15,11 +15,15 @@
from typing import Callable, TypedDict
from typing_extensions import NotRequired
from typing_extensions import NotRequired, Required
from ....extras import logging
from ...extras.types import DPOSample, Sample, SFTSample
logger = logging.get_logger(__name__)
class AlpacaSample(TypedDict, total=False):
system: NotRequired[str]
instruction: NotRequired[str]
@ -27,6 +31,21 @@ class AlpacaSample(TypedDict, total=False):
output: NotRequired[str]
ShareGPTMessage = TypedDict(
"ShareGPTMessage",
{
"from": Required[str], # Role of the message sender (e.g., "human", "gpt", "system")
"value": Required[str], # Content of the message
},
)
class ShareGPTSample(TypedDict, total=False):
"""Type definition for raw ShareGPT sample."""
conversations: Required[list[ShareGPTMessage]]
class PairSample(TypedDict, total=False):
prompt: NotRequired[str]
chosen: NotRequired[list[dict]]
@ -48,6 +67,20 @@ def alpaca_converter(raw_sample: AlpacaSample) -> SFTSample:
{"role": "system", "content": [{"type": "text", "value": raw_sample["system"]}], "loss_weight": 0.0}
)
if "history" in raw_sample:
for idx, item in enumerate(raw_sample["history"]):
if len(item) != 2:
logger.warning_rank0(
f"Warning: History item at index {idx} has invalid length (expected 2, got {len(item)}). Skipping."
)
continue
old_prompt, old_response = item
messages.append({"role": "user", "content": [{"type": "text", "value": old_prompt}], "loss_weight": 0.0})
messages.append(
{"role": "assistant", "content": [{"type": "text", "value": old_response}], "loss_weight": 1.0}
)
if "instruction" in raw_sample or "input" in raw_sample:
messages.append(
{
@ -67,6 +100,62 @@ def alpaca_converter(raw_sample: AlpacaSample) -> SFTSample:
return {"messages": messages}
def sharegpt_converter(raw_sample: ShareGPTSample) -> SFTSample:
"""Converts a raw ShareGPT sample into a formatted SFT (Supervised Fine-Tuning) sample.
Retains only SFT-relevant scenarios and removes parity checks.
Args:
raw_sample (ShareGPTSample): A raw sample in ShareGPT format.
Returns:
dict: A dictionary containing the formatted 'messages' list for SFT training.
Returns an empty list if the input data is invalid.
"""
tag_mapping = {
"human": "user",
"gpt": "assistant",
"observation": "observation",
"function_call": "function",
}
messages = raw_sample.get("conversations", [])
aligned_messages = []
system_content = ""
# Extract system message if present (typically the first message)
if messages and messages[0]["from"] == "system":
system_content = messages[0]["value"]
messages = messages[1:]
if system_content:
aligned_messages.append(
{"role": "system", "content": [{"type": "text", "value": system_content}], "loss_weight": 0.0}
)
has_invalid_role = False
for message in messages:
sender = message["from"]
# validate sender is in supported tags
if sender not in tag_mapping:
logger.warning_rank0(f"Unsupported role tag '{sender}' in message: {message}")
has_invalid_role = True
break
aligned_messages.append(
{
"role": tag_mapping[sender],
"content": [{"type": "text", "value": message["value"]}],
"loss_weight": 0.0 if sender in ("human", "observation") else 1.0,
}
)
if has_invalid_role:
logger.warning_rank0("Skipping invalid example due to unsupported role tags.")
return {"messages": []}
return {"messages": aligned_messages}
def pair_converter(raw_sample: PairSample) -> DPOSample:
"""Convert Pair sample to standard DPO sample.
@ -148,6 +237,7 @@ def pair_converter(raw_sample: PairSample) -> DPOSample:
CONVERTERS = {
"alpaca": alpaca_converter,
"pair": pair_converter,
"sharegpt": sharegpt_converter,
}

View File

@ -19,6 +19,7 @@ from datasets import load_dataset
from llamafactory.v1.config.data_args import DataArguments
from llamafactory.v1.core.data_engine import DataEngine
from llamafactory.v1.plugins.data_plugins.converter import get_converter
@pytest.mark.parametrize("num_samples", [16])
@ -48,6 +49,96 @@ def test_alpaca_converter(num_samples: int):
assert data_engine[index] == {"_dataset_name": "tiny_dataset", **expected_data}
def test_sharegpt_converter_invalid():
example = {
"conversations": [
{
"from": "system",
"value": "Processes historical market data to generate trading signals "
"based on specified technical indicators.",
},
{
"from": "human",
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
"Could you proceed with these function calls to assist me with the task?",
},
{
"from": "gpt",
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
"'name': 'backtest_trading_signals'}```\n",
},
{
"from": "tool",
"value": '<tool id="D2">\n{"analysis": {"RSI_signals": [{"date": "2025-01-10", '
'"symbol": "AAPL", "signal": "Buy"}]}}}\n</tool>\n',
},
]
}
dataset_converter = get_converter("sharegpt")
assert dataset_converter(example) == {"messages": []}
def test_sharegpt_converter_valid():
example = {
"conversations": [
{
"from": "system",
"value": "Processes historical market data to generate trading signals based on "
"specified technical indicators.",
},
{
"from": "human",
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
"Could you proceed with these function calls to assist me with the task?",
},
{
"from": "gpt",
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
"'name': 'backtest_trading_signals'}```\n",
},
]
}
dataset_converter = get_converter("sharegpt")
expected_data = {
"messages": [
{
"content": [
{
"type": "text",
"value": "Processes historical market data to generate trading signals based on "
"specified technical indicators.",
}
],
"loss_weight": 0.0,
"role": "system",
},
{
"content": [
{
"type": "text",
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
"Could you proceed with these function calls to assist me with the task?",
}
],
"loss_weight": 0.0,
"role": "user",
},
{
"content": [
{
"type": "text",
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
"'name': 'backtest_trading_signals'}```\n",
}
],
"loss_weight": 1.0,
"role": "assistant",
},
]
}
assert dataset_converter(example) == expected_data
@pytest.mark.parametrize("num_samples", [16])
def test_pair_converter(num_samples: int):
data_args = DataArguments(dataset="frozenleaves/tiny-dpo/dataset_info.yaml")
@ -98,4 +189,6 @@ def test_pair_converter(num_samples: int):
if __name__ == "__main__":
test_alpaca_converter(1)
test_sharegpt_converter_invalid()
test_sharegpt_converter_valid()
test_pair_converter(1)