[v1] Add support for ShareGPT format. (#9486)

This commit is contained in:
Yinlei Sun
2025-11-18 13:44:08 +08:00
committed by GitHub
parent d4e120423d
commit 45f0437a14
2 changed files with 184 additions and 1 deletions

View File

@@ -19,6 +19,7 @@ from datasets import load_dataset
from llamafactory.v1.config.data_args import DataArguments
from llamafactory.v1.core.data_engine import DataEngine
from llamafactory.v1.plugins.data_plugins.converter import get_converter
@pytest.mark.parametrize("num_samples", [16])
@@ -48,6 +49,96 @@ def test_alpaca_converter(num_samples: int):
assert data_engine[index] == {"_dataset_name": "tiny_dataset", **expected_data}
def test_sharegpt_converter_invalid():
example = {
"conversations": [
{
"from": "system",
"value": "Processes historical market data to generate trading signals "
"based on specified technical indicators.",
},
{
"from": "human",
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
"Could you proceed with these function calls to assist me with the task?",
},
{
"from": "gpt",
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
"'name': 'backtest_trading_signals'}```\n",
},
{
"from": "tool",
"value": '<tool id="D2">\n{"analysis": {"RSI_signals": [{"date": "2025-01-10", '
'"symbol": "AAPL", "signal": "Buy"}]}}}\n</tool>\n',
},
]
}
dataset_converter = get_converter("sharegpt")
assert dataset_converter(example) == {"messages": []}
def test_sharegpt_converter_valid():
example = {
"conversations": [
{
"from": "system",
"value": "Processes historical market data to generate trading signals based on "
"specified technical indicators.",
},
{
"from": "human",
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
"Could you proceed with these function calls to assist me with the task?",
},
{
"from": "gpt",
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
"'name': 'backtest_trading_signals'}```\n",
},
]
}
dataset_converter = get_converter("sharegpt")
expected_data = {
"messages": [
{
"content": [
{
"type": "text",
"value": "Processes historical market data to generate trading signals based on "
"specified technical indicators.",
}
],
"loss_weight": 0.0,
"role": "system",
},
{
"content": [
{
"type": "text",
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
"Could you proceed with these function calls to assist me with the task?",
}
],
"loss_weight": 0.0,
"role": "user",
},
{
"content": [
{
"type": "text",
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
"'name': 'backtest_trading_signals'}```\n",
}
],
"loss_weight": 1.0,
"role": "assistant",
},
]
}
assert dataset_converter(example) == expected_data
@pytest.mark.parametrize("num_samples", [16])
def test_pair_converter(num_samples: int):
data_args = DataArguments(dataset="frozenleaves/tiny-dpo/dataset_info.yaml")
@@ -98,4 +189,6 @@ def test_pair_converter(num_samples: int):
if __name__ == "__main__":
test_alpaca_converter(1)
test_sharegpt_converter_invalid()
test_sharegpt_converter_valid()
test_pair_converter(1)