mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-22 13:42:51 +08:00
add yi-vl
Former-commit-id: 64dac4085e3949f20ab66e507cfb199b09189ead
This commit is contained in:
parent
88159688bb
commit
4583c534f9
@ -856,6 +856,20 @@ _register_template(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
_register_template(
|
||||||
|
name="yi-vl",
|
||||||
|
format_user=StringFormatter(slots=["### Human:\n{{content}}\n### Assistant: "]),
|
||||||
|
stop_words=["###"],
|
||||||
|
default_system=(
|
||||||
|
"This is a chat between an inquisitive human and an AI assistant. "
|
||||||
|
"Assume the role of the AI assistant. "
|
||||||
|
"Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers."
|
||||||
|
"这是一个好奇的人类和一个人工智能助手之间的对话。"
|
||||||
|
"假设你扮演这个AI助手的角色。仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
_register_template(
|
_register_template(
|
||||||
name="yuan",
|
name="yuan",
|
||||||
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
|
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
|
||||||
|
@ -16,7 +16,7 @@ from .utils.moe import add_z3_leaf_module, configure_moe
|
|||||||
from .utils.quantization import configure_quantization
|
from .utils.quantization import configure_quantization
|
||||||
from .utils.rope import configure_rope
|
from .utils.rope import configure_rope
|
||||||
from .utils.valuehead import prepare_valuehead_model
|
from .utils.valuehead import prepare_valuehead_model
|
||||||
from .utils.visual import autocast_projector_dtype, configure_hidden_size
|
from .utils.visual import autocast_projector_dtype, configure_hidden_size, configure_visual
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -50,6 +50,7 @@ def patch_config(
|
|||||||
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||||
configure_moe(config, model_args, is_trainable)
|
configure_moe(config, model_args, is_trainable)
|
||||||
configure_hidden_size(config)
|
configure_hidden_size(config)
|
||||||
|
configure_visual(config, model_args)
|
||||||
|
|
||||||
if model_args.use_cache and not is_trainable:
|
if model_args.use_cache and not is_trainable:
|
||||||
setattr(config, "use_cache", True)
|
setattr(config, "use_cache", True)
|
||||||
|
@ -1,12 +1,14 @@
|
|||||||
from typing import TYPE_CHECKING, Tuple
|
from typing import TYPE_CHECKING, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import transformers
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import PretrainedConfig, PreTrainedModel
|
from transformers import PretrainedConfig, PreTrainedModel, LlavaConfig
|
||||||
|
|
||||||
from ...hparams import ModelArguments
|
from ...hparams import ModelArguments
|
||||||
|
|
||||||
@ -31,3 +33,25 @@ def autocast_projector_dtype(
|
|||||||
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
||||||
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
||||||
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
||||||
|
|
||||||
|
|
||||||
|
class LlavaMultiModalProjectorYiVL(nn.Module):
|
||||||
|
def __init__(self, config: "LlavaConfig"):
|
||||||
|
super().__init__()
|
||||||
|
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
||||||
|
self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
||||||
|
self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
||||||
|
self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
||||||
|
self.act = nn.GELU()
|
||||||
|
self.proj = nn.Sequential(*[self.linear_1, self.linear_2, self.act, self.linear_3, self.linear_4])
|
||||||
|
|
||||||
|
def forward(self, image_features):
|
||||||
|
hidden_states = self.proj(image_features)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
def configure_visual(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
||||||
|
logger = get_logger(__name__)
|
||||||
|
if model_args.visual_inputs and "Yi" in getattr(config.text_config, "_name_or_path", None):
|
||||||
|
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL
|
||||||
|
logger.info("Patched Multimodal Projector for Yi-VL.")
|
||||||
|
@ -5,7 +5,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from transformers import Seq2SeqTrainer
|
from transformers import Seq2SeqTrainer, ProcessorMixin
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
@ -26,9 +26,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||||||
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
|
def __init__(self, finetuning_args: "FinetuningArguments", processor: "ProcessorMixin", **kwargs) -> None:
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.finetuning_args = finetuning_args
|
self.finetuning_args = finetuning_args
|
||||||
|
self.processor = processor
|
||||||
if finetuning_args.use_badam:
|
if finetuning_args.use_badam:
|
||||||
from badam import clip_grad_norm_for_sparse_tensor
|
from badam import clip_grad_norm_for_sparse_tensor
|
||||||
|
|
||||||
@ -120,3 +121,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||||||
for label, pred in zip(decoded_labels, decoded_preds):
|
for label, pred in zip(decoded_labels, decoded_preds):
|
||||||
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
||||||
writer.write("\n".join(res))
|
writer.write("\n".join(res))
|
||||||
|
|
||||||
|
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
|
||||||
|
super().save_model(output_dir, _internal_call)
|
||||||
|
if self.processor is not None:
|
||||||
|
if output_dir is None:
|
||||||
|
output_dir = self.args.output_dir
|
||||||
|
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
@ -30,6 +30,7 @@ def run_sft(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
|
processor = tokenizer_module["processor"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
|
|
||||||
@ -55,6 +56,7 @@ def run_sft(
|
|||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
finetuning_args=finetuning_args,
|
finetuning_args=finetuning_args,
|
||||||
|
processor=processor,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user