mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 12:20:37 +08:00
@@ -44,10 +44,10 @@ def preprocess_dataset(
|
||||
tokenized_examples = tokenizer(examples["prompt"], **kwargs)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = data_args.max_source_length
|
||||
block_size = data_args.cutoff_len
|
||||
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# split by chunks of max_source_length
|
||||
# split by chunks of cutoff_len
|
||||
result = {
|
||||
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
@@ -58,7 +58,6 @@ def preprocess_dataset(
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
max_length = data_args.max_source_length + data_args.max_target_length
|
||||
|
||||
for query, response, history, system in construct_example(examples):
|
||||
input_ids, labels = [], []
|
||||
@@ -66,13 +65,14 @@ def preprocess_dataset(
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
|
||||
tokenizer, query, response, history, system
|
||||
)):
|
||||
if len(source_ids) > data_args.max_source_length:
|
||||
source_ids = source_ids[:data_args.max_source_length]
|
||||
if len(target_ids) > data_args.max_target_length:
|
||||
target_ids = target_ids[:data_args.max_target_length]
|
||||
total_len = len(source_ids) + len(target_ids)
|
||||
max_source_len = int(data_args.cutoff_len * (len(source_ids) / total_len))
|
||||
max_target_len = int(data_args.cutoff_len * (len(target_ids) / total_len))
|
||||
|
||||
if len(input_ids) + len(source_ids) + len(target_ids) > max_length:
|
||||
break
|
||||
if len(source_ids) > max_source_len:
|
||||
source_ids = source_ids[:max_source_len]
|
||||
if len(target_ids) > max_target_len:
|
||||
target_ids = target_ids[:max_target_len]
|
||||
|
||||
if turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
@@ -86,6 +86,10 @@ def preprocess_dataset(
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
if len(input_ids) > data_args.cutoff_len:
|
||||
input_ids = input_ids[:data_args.cutoff_len]
|
||||
labels = labels[:data_args.cutoff_len]
|
||||
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
@@ -97,19 +101,19 @@ def preprocess_dataset(
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
|
||||
for query, response, history, system in construct_example(examples):
|
||||
source_ids, target_ids = template.encode_oneturn(tokenizer, query, response, history, system)
|
||||
|
||||
if len(source_ids) > data_args.max_source_length:
|
||||
source_ids = source_ids[:data_args.max_source_length]
|
||||
if len(target_ids) > data_args.max_target_length:
|
||||
target_ids = target_ids[:data_args.max_target_length]
|
||||
input_ids, labels = template.encode_oneturn(tokenizer, query, response, history, system)
|
||||
|
||||
if template.efficient_eos:
|
||||
target_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
model_inputs["input_ids"].append(source_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(source_ids))
|
||||
model_inputs["labels"].append(target_ids)
|
||||
if len(input_ids) > data_args.cutoff_len:
|
||||
input_ids = input_ids[:data_args.cutoff_len]
|
||||
if len(labels) > data_args.cutoff_len:
|
||||
labels = labels[:data_args.cutoff_len]
|
||||
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
|
||||
return model_inputs
|
||||
|
||||
@@ -120,17 +124,21 @@ def preprocess_dataset(
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, query, response[0], history, system)
|
||||
_, rejected_ids = template.encode_oneturn(tokenizer, query, response[1], history, system)
|
||||
|
||||
if len(prompt_ids) > data_args.max_source_length:
|
||||
prompt_ids = prompt_ids[:data_args.max_source_length]
|
||||
if len(chosen_ids) > data_args.max_target_length:
|
||||
chosen_ids = chosen_ids[:data_args.max_target_length]
|
||||
if len(rejected_ids) > data_args.max_target_length:
|
||||
rejected_ids = rejected_ids[:data_args.max_target_length]
|
||||
|
||||
if template.efficient_eos:
|
||||
chosen_ids += [tokenizer.eos_token_id]
|
||||
rejected_ids += [tokenizer.eos_token_id]
|
||||
|
||||
total_len = len(prompt_ids) + max(len(chosen_ids), len(rejected_ids))
|
||||
max_source_len = int(data_args.cutoff_len * (len(prompt_ids) / total_len))
|
||||
max_target_len = int(data_args.cutoff_len * (max(len(chosen_ids), len(rejected_ids)) / total_len))
|
||||
|
||||
if len(prompt_ids) > max_source_len:
|
||||
prompt_ids = prompt_ids[:max_source_len]
|
||||
if len(chosen_ids) > max_target_len:
|
||||
chosen_ids = chosen_ids[:max_target_len]
|
||||
if len(rejected_ids) > max_target_len:
|
||||
rejected_ids = rejected_ids[:max_target_len]
|
||||
|
||||
model_inputs["prompt_ids"].append(prompt_ids)
|
||||
model_inputs["chosen_ids"].append(chosen_ids)
|
||||
model_inputs["rejected_ids"].append(rejected_ids)
|
||||
|
||||
Reference in New Issue
Block a user