mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 06:12:50 +08:00
Former-commit-id: 707f0b1d5d42b8e2c5b783c7783f65dfa9890a68
This commit is contained in:
parent
1bea1ed868
commit
34ecad4af8
@ -2,9 +2,9 @@ import uuid
|
|||||||
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
|
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
|
||||||
|
|
||||||
from ..data import get_template_and_fix_tokenizer
|
from ..data import get_template_and_fix_tokenizer
|
||||||
from ..extras.misc import get_device_count
|
from ..extras.misc import get_device_count, infer_optim_dtype
|
||||||
from ..extras.packages import is_vllm_available
|
from ..extras.packages import is_vllm_available
|
||||||
from ..model import load_tokenizer
|
from ..model import load_config, load_tokenizer
|
||||||
from .base_engine import BaseEngine, Response
|
from .base_engine import BaseEngine, Response
|
||||||
|
|
||||||
|
|
||||||
@ -23,10 +23,20 @@ class VllmEngine(BaseEngine):
|
|||||||
finetuning_args: "FinetuningArguments",
|
finetuning_args: "FinetuningArguments",
|
||||||
generating_args: "GeneratingArguments",
|
generating_args: "GeneratingArguments",
|
||||||
) -> None:
|
) -> None:
|
||||||
|
config = load_config(model_args) # may download model from ms hub
|
||||||
|
load_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||||
|
|
||||||
self.can_generate = finetuning_args.stage == "sft"
|
self.can_generate = finetuning_args.stage == "sft"
|
||||||
|
self.tokenizer = load_tokenizer(model_args)
|
||||||
|
self.tokenizer.padding_side = "left"
|
||||||
|
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||||
|
self.generating_args = generating_args.to_dict()
|
||||||
|
|
||||||
engine_args = AsyncEngineArgs(
|
engine_args = AsyncEngineArgs(
|
||||||
model=model_args.model_name_or_path,
|
model=model_args.model_name_or_path,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
|
download_dir=model_args.cache_dir,
|
||||||
|
dtype=str(load_dtype).split(".")[-1],
|
||||||
max_model_len=model_args.vllm_maxlen,
|
max_model_len=model_args.vllm_maxlen,
|
||||||
tensor_parallel_size=get_device_count() or 1,
|
tensor_parallel_size=get_device_count() or 1,
|
||||||
gpu_memory_utilization=model_args.vllm_gpu_util,
|
gpu_memory_utilization=model_args.vllm_gpu_util,
|
||||||
@ -35,10 +45,6 @@ class VllmEngine(BaseEngine):
|
|||||||
enforce_eager=model_args.vllm_enforce_eager,
|
enforce_eager=model_args.vllm_enforce_eager,
|
||||||
)
|
)
|
||||||
self.model = AsyncLLMEngine.from_engine_args(engine_args)
|
self.model = AsyncLLMEngine.from_engine_args(engine_args)
|
||||||
self.tokenizer = load_tokenizer(model_args)
|
|
||||||
self.tokenizer.padding_side = "left"
|
|
||||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
|
||||||
self.generating_args = generating_args.to_dict()
|
|
||||||
|
|
||||||
async def _generate(
|
async def _generate(
|
||||||
self,
|
self,
|
||||||
|
@ -1,8 +1,9 @@
|
|||||||
from .loader import load_model, load_tokenizer
|
from .loader import load_config, load_model, load_tokenizer
|
||||||
from .utils import find_all_linear_modules, load_valuehead_params
|
from .utils import find_all_linear_modules, load_valuehead_params
|
||||||
|
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
"load_config",
|
||||||
"load_model",
|
"load_model",
|
||||||
"load_tokenizer",
|
"load_tokenizer",
|
||||||
"load_valuehead_params",
|
"load_valuehead_params",
|
||||||
|
@ -12,7 +12,7 @@ from .utils import load_valuehead_params, register_autoclass
|
|||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
|
||||||
|
|
||||||
from ..hparams import FinetuningArguments, ModelArguments
|
from ..hparams import FinetuningArguments, ModelArguments
|
||||||
|
|
||||||
@ -21,6 +21,11 @@ logger = get_logger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||||
|
r"""
|
||||||
|
Gets arguments to load config/tokenizer/model.
|
||||||
|
|
||||||
|
Note: including inplace operation of model_args.
|
||||||
|
"""
|
||||||
model_args.model_name_or_path = try_download_model_from_ms(model_args)
|
model_args.model_name_or_path = try_download_model_from_ms(model_args)
|
||||||
return {
|
return {
|
||||||
"trust_remote_code": True,
|
"trust_remote_code": True,
|
||||||
@ -32,9 +37,7 @@ def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
|||||||
|
|
||||||
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
||||||
r"""
|
r"""
|
||||||
Loads pretrained tokenizer. Must before load_model.
|
Loads pretrained tokenizer.
|
||||||
|
|
||||||
Note: including inplace operation of model_args.
|
|
||||||
"""
|
"""
|
||||||
init_kwargs = _get_init_kwargs(model_args)
|
init_kwargs = _get_init_kwargs(model_args)
|
||||||
try:
|
try:
|
||||||
@ -57,6 +60,14 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
|||||||
return tokenizer
|
return tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
|
||||||
|
r"""
|
||||||
|
Loads model config.
|
||||||
|
"""
|
||||||
|
init_kwargs = _get_init_kwargs(model_args)
|
||||||
|
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||||
|
|
||||||
|
|
||||||
def load_model(
|
def load_model(
|
||||||
tokenizer: "PreTrainedTokenizer",
|
tokenizer: "PreTrainedTokenizer",
|
||||||
model_args: "ModelArguments",
|
model_args: "ModelArguments",
|
||||||
@ -65,10 +76,10 @@ def load_model(
|
|||||||
add_valuehead: bool = False,
|
add_valuehead: bool = False,
|
||||||
) -> "PreTrainedModel":
|
) -> "PreTrainedModel":
|
||||||
r"""
|
r"""
|
||||||
Loads pretrained model. Must after load_tokenizer.
|
Loads pretrained model.
|
||||||
"""
|
"""
|
||||||
init_kwargs = _get_init_kwargs(model_args)
|
init_kwargs = _get_init_kwargs(model_args)
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
config = load_config(model_args)
|
||||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||||
|
|
||||||
model = None
|
model = None
|
||||||
|
Loading…
x
Reference in New Issue
Block a user