Former-commit-id: 707f0b1d5d42b8e2c5b783c7783f65dfa9890a68
This commit is contained in:
hiyouga 2024-04-24 01:30:16 +08:00
parent 1bea1ed868
commit 34ecad4af8
3 changed files with 31 additions and 13 deletions

View File

@ -2,9 +2,9 @@ import uuid
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
from ..data import get_template_and_fix_tokenizer from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_device_count from ..extras.misc import get_device_count, infer_optim_dtype
from ..extras.packages import is_vllm_available from ..extras.packages import is_vllm_available
from ..model import load_tokenizer from ..model import load_config, load_tokenizer
from .base_engine import BaseEngine, Response from .base_engine import BaseEngine, Response
@ -23,10 +23,20 @@ class VllmEngine(BaseEngine):
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments", generating_args: "GeneratingArguments",
) -> None: ) -> None:
config = load_config(model_args) # may download model from ms hub
load_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
self.can_generate = finetuning_args.stage == "sft" self.can_generate = finetuning_args.stage == "sft"
self.tokenizer = load_tokenizer(model_args)
self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
engine_args = AsyncEngineArgs( engine_args = AsyncEngineArgs(
model=model_args.model_name_or_path, model=model_args.model_name_or_path,
trust_remote_code=True, trust_remote_code=True,
download_dir=model_args.cache_dir,
dtype=str(load_dtype).split(".")[-1],
max_model_len=model_args.vllm_maxlen, max_model_len=model_args.vllm_maxlen,
tensor_parallel_size=get_device_count() or 1, tensor_parallel_size=get_device_count() or 1,
gpu_memory_utilization=model_args.vllm_gpu_util, gpu_memory_utilization=model_args.vllm_gpu_util,
@ -35,10 +45,6 @@ class VllmEngine(BaseEngine):
enforce_eager=model_args.vllm_enforce_eager, enforce_eager=model_args.vllm_enforce_eager,
) )
self.model = AsyncLLMEngine.from_engine_args(engine_args) self.model = AsyncLLMEngine.from_engine_args(engine_args)
self.tokenizer = load_tokenizer(model_args)
self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
async def _generate( async def _generate(
self, self,

View File

@ -1,8 +1,9 @@
from .loader import load_model, load_tokenizer from .loader import load_config, load_model, load_tokenizer
from .utils import find_all_linear_modules, load_valuehead_params from .utils import find_all_linear_modules, load_valuehead_params
__all__ = [ __all__ = [
"load_config",
"load_model", "load_model",
"load_tokenizer", "load_tokenizer",
"load_valuehead_params", "load_valuehead_params",

View File

@ -12,7 +12,7 @@ from .utils import load_valuehead_params, register_autoclass
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
from ..hparams import FinetuningArguments, ModelArguments from ..hparams import FinetuningArguments, ModelArguments
@ -21,6 +21,11 @@ logger = get_logger(__name__)
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]: def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
r"""
Gets arguments to load config/tokenizer/model.
Note: including inplace operation of model_args.
"""
model_args.model_name_or_path = try_download_model_from_ms(model_args) model_args.model_name_or_path = try_download_model_from_ms(model_args)
return { return {
"trust_remote_code": True, "trust_remote_code": True,
@ -32,9 +37,7 @@ def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer": def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
r""" r"""
Loads pretrained tokenizer. Must before load_model. Loads pretrained tokenizer.
Note: including inplace operation of model_args.
""" """
init_kwargs = _get_init_kwargs(model_args) init_kwargs = _get_init_kwargs(model_args)
try: try:
@ -57,6 +60,14 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
return tokenizer return tokenizer
def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
r"""
Loads model config.
"""
init_kwargs = _get_init_kwargs(model_args)
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
def load_model( def load_model(
tokenizer: "PreTrainedTokenizer", tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments", model_args: "ModelArguments",
@ -65,10 +76,10 @@ def load_model(
add_valuehead: bool = False, add_valuehead: bool = False,
) -> "PreTrainedModel": ) -> "PreTrainedModel":
r""" r"""
Loads pretrained model. Must after load_tokenizer. Loads pretrained model.
""" """
init_kwargs = _get_init_kwargs(model_args) init_kwargs = _get_init_kwargs(model_args)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs) config = load_config(model_args)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable) patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None model = None