mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
refactor mm training
This commit is contained in:
@@ -12,11 +12,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen
|
||||
from .processor_utils import infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -40,9 +41,6 @@ def _encode_feedback_example(
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
if response[0]["content"]: # desired example
|
||||
kto_tag = True
|
||||
messages = prompt + [response[0]]
|
||||
@@ -62,10 +60,8 @@ def _encode_feedback_example(
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
kl_prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + kl_prompt_ids
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, tokenizer, processor)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, tokenizer, processor)
|
||||
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
@@ -91,28 +87,15 @@ def preprocess_feedback_dataset(
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
|
||||
kl_response = examples["response"][::-1]
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"attention_mask": [],
|
||||
"labels": [],
|
||||
"kl_input_ids": [],
|
||||
"kl_attention_mask": [],
|
||||
"kl_labels": [],
|
||||
"kto_tags": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
model_inputs["kl_token_type_ids"] = []
|
||||
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
prompt = template.mm_plugin.process_messages(examples["prompt"][i], examples["images"][i], processor)
|
||||
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
|
||||
prompt=examples["prompt"][i],
|
||||
prompt=prompt,
|
||||
response=examples["response"][i],
|
||||
kl_response=kl_response[i],
|
||||
system=examples["system"][i],
|
||||
@@ -129,11 +112,15 @@ def preprocess_feedback_dataset(
|
||||
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor))
|
||||
template.mm_plugin.process_model_inputs(
|
||||
model_inputs=model_inputs,
|
||||
images=examples["images"][i],
|
||||
feature_seqlens={
|
||||
"token_type_ids": len(input_ids),
|
||||
"kl_token_type_ids": len(kl_input_ids),
|
||||
},
|
||||
processor=processor,
|
||||
)
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
|
||||
Reference in New Issue
Block a user