Update preprocess.py

Former-commit-id: 7f3bd35c0ead92710036064bf306740e8ee901c7
This commit is contained in:
hoshi-hiyouga 2024-04-26 04:10:28 +08:00 committed by GitHub
parent 15b7182418
commit 3257df2fdb

View File

@ -8,15 +8,26 @@ from .utils import Role
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import AutoProcessor, PreTrainedTokenizer
from PIL import Image
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
from transformers.image_processing_utils import BaseImageProcessor
from transformers.tokenization_utils import PreTrainedTokenizer
from ..hparams import DataArguments
from .template import Template
logger = get_logger(__name__)
def _preprocess_visual_inputs(model_inputs: Dict[str, Any], processor: "ProcessorMixin", image: "Image") -> None:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"][0]
if "pixel_values" not in model_inputs:
model_inputs["pixel_values"] = []
model_inputs["pixel_values"].append(pixel_values)
def preprocess_pretrain_dataset(
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
) -> Dict[str, List[List[int]]]:
@ -47,10 +58,10 @@ def preprocess_pretrain_dataset(
def preprocess_supervised_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
processor: "AutoProcessor" = None,
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
@ -90,17 +101,15 @@ def preprocess_supervised_dataset(
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
if processor is not None and "images" in examples:
pixel_values = processor.image_processor(examples["images"][0], return_tensors="pt")["pixel_values"][0]
if "pixel_values" not in model_inputs:
model_inputs["pixel_values"] = []
model_inputs["pixel_values"].append(pixel_values)
_preprocess_visual_inputs(model_inputs, processor, examples["images"][i][0])
return model_inputs
def preprocess_packed_supervised_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
tokenizer: "PreTrainedTokenizer",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
@ -145,8 +154,9 @@ def preprocess_packed_supervised_dataset(
def preprocess_unsupervised_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X` and labels with format `Y <eos>`
@ -176,14 +186,17 @@ def preprocess_unsupervised_dataset(
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
if processor is not None and "images" in examples:
_preprocess_visual_inputs(model_inputs, processor, examples["images"][i][0])
return model_inputs
def preprocess_pairwise_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
@ -218,6 +231,8 @@ def preprocess_pairwise_dataset(
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)
if processor is not None and "images" in examples:
_preprocess_visual_inputs(model_inputs, processor, examples["images"][i][0])
return model_inputs
@ -248,12 +263,12 @@ def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer:
def get_preprocess_and_print_func(
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
processor: Optional["AutoProcessor"] = None,
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[Callable, Callable]:
if stage == "pt":
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args)
@ -261,25 +276,38 @@ def get_preprocess_and_print_func(
elif stage == "sft" and not training_args.predict_with_generate:
if data_args.packing:
preprocess_func = partial(
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
preprocess_packed_supervised_dataset,
template=template,
tokenizer=tokenizer,
data_args=data_args,
)
else:
preprocess_func = partial(
preprocess_supervised_dataset,
tokenizer=tokenizer,
template=template,
data_args=data_args,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
elif stage == "rm":
preprocess_func = partial(
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
preprocess_pairwise_dataset,
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
else:
preprocess_func = partial(
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
preprocess_unsupervised_dataset,
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
return preprocess_func, print_function