From 320e40d873f89d2fff7eebe20ba1bd624af57387 Mon Sep 17 00:00:00 2001 From: hoshi-hiyouga Date: Wed, 15 Jan 2025 11:06:19 +0800 Subject: [PATCH] update readme (#6648) Former-commit-id: 563be2286a756fcd5d41b351beb8e1aa4e95842b --- README.md | 26 ++++++++++++++++++++++---- README_zh.md | 27 +++++++++++++++++++++++---- 2 files changed, 45 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index d447fc65..beec708a 100644 --- a/README.md +++ b/README.md @@ -1,21 +1,31 @@ ![# LLaMA Factory](assets/logo.png) [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers) -[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE) [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main) +[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors) +[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml) [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/) [![Citation](https://img.shields.io/badge/citation-210-green)](https://scholar.google.com/scholar?cites=12620864006390196564) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) -[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK) + [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai) +[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK) +[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory) + [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing) [![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![SageMaker](https://img.shields.io/badge/SageMaker-Open%20in%20AWS-blue)](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) -[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory) -[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535) +

+ Easily fine-tune 100+ large language models with zero-code CLI and Web UI +

+

+ + Github trend + +

👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg). @@ -71,6 +81,13 @@ Choose your path: - **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, SwanLab, etc. - **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker. +### Day-N Support for Fine-Tuning Cutting-Edge Models + +| Support Date | Model Name | +| ------------ | ---------------------------------------------------------- | +| Day 0 | Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6 | +| Day 1 | Llama 3 / GLM-4 / PaliGemma2 | + ## Benchmark Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory. @@ -804,6 +821,7 @@ If you have a project that should be incorporated, please contact via email or c 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory. 1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**: A full pipeline for RAG retrieval model fine-tuning, inference, and distillation. [[blog]](https://zhuanlan.zhihu.com/p/987727357) 1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**: A modified library that supports long sequence SFT & DPO using ring attention. +1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**: An o1-like model fine-tuned by NovaSky AI with very small cost. diff --git a/README_zh.md b/README_zh.md index b4e5f21d..c1b5d9e1 100644 --- a/README_zh.md +++ b/README_zh.md @@ -1,21 +1,32 @@ ![# LLaMA Factory](assets/logo.png) [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers) -[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE) [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main) +[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors) +[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml) [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/) [![Citation](https://img.shields.io/badge/citation-210-green)](https://scholar.google.com/scholar?cites=12620864006390196564) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) -[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK) + [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai) +[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK) +[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory) + [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing) [![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![SageMaker](https://img.shields.io/badge/SageMaker-Open%20in%20AWS-blue)](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) -[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory) -[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535) +

+ 使用零代码命令行Web UI 轻松微调百余种大模型 +

+

+ + Github trend + +

+ 👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)。 @@ -72,6 +83,13 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 - **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。 - **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。 +### 最新模型的 Day-N 微调适配 + +| 适配时间 | 模型名称 | +| ------------ | ---------------------------------------------------------- | +| Day 0 | Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6 | +| Day 1 | Llama 3 / GLM-4 / PaliGemma2 | + ## 性能指标 与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。 @@ -805,6 +823,7 @@ swanlab_run_name: test_run # 可选 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调. 1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**:一个全链路 RAG 检索模型微调、推理和蒸馏代码库。[[blog]](https://zhuanlan.zhihu.com/p/987727357) 1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**:一个魔改后的代码库,通过 Ring Attention 支持长序列的 SFT 和 DPO 训练。 +1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**:由 NovaSky AI 微调的低成本类 o1 长推理模型。