mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 03:10:35 +08:00
add configurer
This commit is contained in:
@@ -1,20 +1,20 @@
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.utils.versions import require_version
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
import llmtuner.model.patcher as patcher
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
||||
from llmtuner.extras.packages import is_flash_attn2_available
|
||||
from llmtuner.hparams import FinetuningArguments
|
||||
from llmtuner.extras.misc import count_parameters, try_download_model_from_ms
|
||||
from llmtuner.model.adapter import init_adapter
|
||||
from llmtuner.model.patches import patch_config, patch_model, patch_valuehead_model, patch_tokenizer, register_autoclass
|
||||
from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training, resize_embedding_layer
|
||||
from llmtuner.model.utils import (
|
||||
load_valuehead_params, prepare_model_for_training, resize_embedding_layer, register_autoclass
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from llmtuner.hparams import ModelArguments
|
||||
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -55,45 +55,15 @@ def load_model_and_tokenizer(
|
||||
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
|
||||
**config_kwargs
|
||||
)
|
||||
patch_tokenizer(tokenizer)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
patch_config(config, model_args, is_trainable)
|
||||
|
||||
# Set FlashAttention-2
|
||||
if model_args.flash_attn and is_flash_attn2_available():
|
||||
config_kwargs["use_flash_attention_2"] = True
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
patcher.patch_tokenizer(tokenizer)
|
||||
patcher.patch_config(config, model_args, is_trainable)
|
||||
patcher.configure_rope(config, model_args, is_trainable)
|
||||
patcher.configure_flashattn(config, model_args)
|
||||
patcher.configure_longlora(config, model_args, is_trainable)
|
||||
patcher.configure_quantization(config, config_kwargs, model_args)
|
||||
|
||||
# Quantization configurations (using gptq or awq)
|
||||
if getattr(config, "quantization_config", None):
|
||||
model_args.quantization_bit = None # remove bnb quantization
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
quantization_config = getattr(config, "quantization_config", None)
|
||||
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
|
||||
|
||||
# Quantization configurations (using bitsandbytes)
|
||||
if model_args.quantization_bit is not None:
|
||||
if is_deepspeed_zero3_enabled():
|
||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
||||
|
||||
if model_args.quantization_bit == 8:
|
||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
if model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||
bnb_4bit_quant_type=model_args.quantization_type
|
||||
)
|
||||
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||
|
||||
# Load pre-trained models (without valuehead)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
config=config,
|
||||
@@ -101,23 +71,20 @@ def load_model_and_tokenizer(
|
||||
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
|
||||
**config_kwargs
|
||||
)
|
||||
patch_model(model)
|
||||
patcher.patch_model(model)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
resize_embedding_layer(model, tokenizer)
|
||||
|
||||
# Initialize adapters
|
||||
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
|
||||
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
||||
|
||||
# Prepare model with valuehead for RLHF
|
||||
if add_valuehead:
|
||||
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
||||
patch_valuehead_model(model)
|
||||
patcher.patch_valuehead_model(model)
|
||||
vhead_params = load_valuehead_params(model_args)
|
||||
if vhead_params is not None:
|
||||
model.load_state_dict(vhead_params, strict=False)
|
||||
|
||||
# Prepare model for inference
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False) # fix all model params
|
||||
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
|
||||
|
||||
Reference in New Issue
Block a user