mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-20 05:40:34 +08:00
fix ppo in trl 0.8.6
This commit is contained in:
@@ -1,7 +1,9 @@
|
||||
import json
|
||||
from contextlib import nullcontext
|
||||
from typing import TYPE_CHECKING, Dict, List, Literal, Optional
|
||||
|
||||
import torch
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
|
||||
from ...extras.packages import is_requests_available
|
||||
|
||||
@@ -28,16 +30,27 @@ def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.
|
||||
|
||||
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
|
||||
r"""
|
||||
Replaces the default/reward modules in the model. The model is already unwrapped (and gathered).
|
||||
Replaces the default/reward modules in the model. The model is already unwrapped.
|
||||
"""
|
||||
if target == "reward": # save default head temporarily
|
||||
setattr(model, "default_head_weight", model.v_head.summary.weight.data.detach().clone())
|
||||
setattr(model, "default_head_bias", model.v_head.summary.bias.data.detach().clone())
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
params = [model.v_head.summary.weight, model.v_head.summary.bias]
|
||||
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
|
||||
else:
|
||||
context_maybe_zero3 = nullcontext()
|
||||
|
||||
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
|
||||
device = model.v_head.summary.weight.device
|
||||
model.v_head.summary.weight.data = model.get_buffer("{}_head_weight".format(target)).detach().clone().to(device)
|
||||
model.v_head.summary.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone().to(device)
|
||||
with context_maybe_zero3:
|
||||
if target == "reward": # save default head temporarily
|
||||
setattr(model, "default_head_weight", model.v_head.summary.weight.data.detach().clone())
|
||||
setattr(model, "default_head_bias", model.v_head.summary.bias.data.detach().clone())
|
||||
|
||||
device = model.v_head.summary.weight.device
|
||||
model.v_head.summary.weight.data = (
|
||||
model.get_buffer("{}_head_weight".format(target)).detach().clone().to(device)
|
||||
)
|
||||
model.v_head.summary.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone().to(device)
|
||||
|
||||
|
||||
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
|
||||
|
||||
Reference in New Issue
Block a user