mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 04:02:49 +08:00
1. add modelers hub support
Former-commit-id: 24ebe187e360753666b768685a0dcc78054bb702
This commit is contained in:
parent
4464a6ff5b
commit
26e897e861
20
README.md
20
README.md
@ -75,6 +75,8 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
|
|
||||||
## Changelog
|
## Changelog
|
||||||
|
|
||||||
|
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelers-hub) for usage.
|
||||||
|
|
||||||
[24/09/19] We support fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
|
[24/09/19] We support fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
|
||||||
|
|
||||||
[24/08/30] We support fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
|
[24/08/30] We support fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
|
||||||
@ -363,7 +365,7 @@ cd LLaMA-Factory
|
|||||||
pip install -e ".[torch,metrics]"
|
pip install -e ".[torch,metrics]"
|
||||||
```
|
```
|
||||||
|
|
||||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, quality
|
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, quality, openmind
|
||||||
|
|
||||||
> [!TIP]
|
> [!TIP]
|
||||||
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||||
@ -415,7 +417,7 @@ Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaij
|
|||||||
|
|
||||||
### Data Preparation
|
### Data Preparation
|
||||||
|
|
||||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
|
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can use datasets on HuggingFace hub, ModelScope hub, modelers hub or load the dataset in local disk.
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> Please update `data/dataset_info.json` to use your custom dataset.
|
> Please update `data/dataset_info.json` to use your custom dataset.
|
||||||
@ -483,6 +485,7 @@ docker build -f ./docker/docker-cuda/Dockerfile \
|
|||||||
docker run -dit --gpus=all \
|
docker run -dit --gpus=all \
|
||||||
-v ./hf_cache:/root/.cache/huggingface \
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
-v ./ms_cache:/root/.cache/modelscope \
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./om_cache:/root/.cache/openmind \
|
||||||
-v ./data:/app/data \
|
-v ./data:/app/data \
|
||||||
-v ./output:/app/output \
|
-v ./output:/app/output \
|
||||||
-p 7860:7860 \
|
-p 7860:7860 \
|
||||||
@ -507,6 +510,7 @@ docker build -f ./docker/docker-npu/Dockerfile \
|
|||||||
docker run -dit \
|
docker run -dit \
|
||||||
-v ./hf_cache:/root/.cache/huggingface \
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
-v ./ms_cache:/root/.cache/modelscope \
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./om_cache:/root/.cache/openmind \
|
||||||
-v ./data:/app/data \
|
-v ./data:/app/data \
|
||||||
-v ./output:/app/output \
|
-v ./output:/app/output \
|
||||||
-v /usr/local/dcmi:/usr/local/dcmi \
|
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||||
@ -540,6 +544,7 @@ docker build -f ./docker/docker-rocm/Dockerfile \
|
|||||||
docker run -dit \
|
docker run -dit \
|
||||||
-v ./hf_cache:/root/.cache/huggingface \
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
-v ./ms_cache:/root/.cache/modelscope \
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./om_cache:/root/.cache/openmind \
|
||||||
-v ./data:/app/data \
|
-v ./data:/app/data \
|
||||||
-v ./output:/app/output \
|
-v ./output:/app/output \
|
||||||
-v ./saves:/app/saves \
|
-v ./saves:/app/saves \
|
||||||
@ -560,6 +565,7 @@ docker exec -it llamafactory bash
|
|||||||
|
|
||||||
- `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
|
- `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
|
||||||
- `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
|
- `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
|
||||||
|
- `om_cache`: Similar to Hugging Face cache but for Modelers users.
|
||||||
- `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
|
- `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
|
||||||
- `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
|
- `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
|
||||||
|
|
||||||
@ -584,6 +590,16 @@ export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
|
|||||||
|
|
||||||
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
|
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
|
||||||
|
|
||||||
|
### Download from Modelers Hub
|
||||||
|
|
||||||
|
You can also use Modelers Hub to download models and datasets.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_OPENMIND_HUB=1 # `set USE_OPENMIND_HUB=1` for Windows
|
||||||
|
```
|
||||||
|
|
||||||
|
Train the model by specifying a model ID of the Modelers Hub as the `model_name_or_path`. You can find a full list of model IDs at [Modelers Hub](https://modelers.cn/models), e.g., `TeleAI/TeleChat-7B-pt`.
|
||||||
|
|
||||||
### Use W&B Logger
|
### Use W&B Logger
|
||||||
|
|
||||||
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
|
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
|
||||||
|
20
README_zh.md
20
README_zh.md
@ -75,6 +75,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
|||||||
</details>
|
</details>
|
||||||
|
|
||||||
## 更新日志
|
## 更新日志
|
||||||
|
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)。
|
||||||
|
|
||||||
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
|
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
|
||||||
|
|
||||||
@ -364,7 +365,7 @@ cd LLaMA-Factory
|
|||||||
pip install -e ".[torch,metrics]"
|
pip install -e ".[torch,metrics]"
|
||||||
```
|
```
|
||||||
|
|
||||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、quality
|
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、quality、openmind
|
||||||
|
|
||||||
> [!TIP]
|
> [!TIP]
|
||||||
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||||
@ -416,7 +417,7 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
|||||||
|
|
||||||
### 数据准备
|
### 数据准备
|
||||||
|
|
||||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
|
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace , ModelScope 或者 Modelers 上的数据集或加载本地数据集。
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
|
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
|
||||||
@ -484,6 +485,7 @@ docker build -f ./docker/docker-cuda/Dockerfile \
|
|||||||
docker run -dit --gpus=all \
|
docker run -dit --gpus=all \
|
||||||
-v ./hf_cache:/root/.cache/huggingface \
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
-v ./ms_cache:/root/.cache/modelscope \
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./om_cache:/root/.cache/openmind \
|
||||||
-v ./data:/app/data \
|
-v ./data:/app/data \
|
||||||
-v ./output:/app/output \
|
-v ./output:/app/output \
|
||||||
-p 7860:7860 \
|
-p 7860:7860 \
|
||||||
@ -508,6 +510,7 @@ docker build -f ./docker/docker-npu/Dockerfile \
|
|||||||
docker run -dit \
|
docker run -dit \
|
||||||
-v ./hf_cache:/root/.cache/huggingface \
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
-v ./ms_cache:/root/.cache/modelscope \
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./om_cache:/root/.cache/openmind \
|
||||||
-v ./data:/app/data \
|
-v ./data:/app/data \
|
||||||
-v ./output:/app/output \
|
-v ./output:/app/output \
|
||||||
-v /usr/local/dcmi:/usr/local/dcmi \
|
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||||
@ -541,6 +544,7 @@ docker build -f ./docker/docker-rocm/Dockerfile \
|
|||||||
docker run -dit \
|
docker run -dit \
|
||||||
-v ./hf_cache:/root/.cache/huggingface \
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
-v ./ms_cache:/root/.cache/modelscope \
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./om_cache:/root/.cache/openmind \
|
||||||
-v ./data:/app/data \
|
-v ./data:/app/data \
|
||||||
-v ./output:/app/output \
|
-v ./output:/app/output \
|
||||||
-v ./saves:/app/saves \
|
-v ./saves:/app/saves \
|
||||||
@ -561,6 +565,7 @@ docker exec -it llamafactory bash
|
|||||||
|
|
||||||
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
|
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
|
||||||
- `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。
|
- `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。
|
||||||
|
- `om_cache`:类似 Hugging Face 缓存文件夹,为 Modelers 用户提供。
|
||||||
- `data`:宿主机中存放数据集的文件夹路径。
|
- `data`:宿主机中存放数据集的文件夹路径。
|
||||||
- `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
|
- `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
|
||||||
|
|
||||||
@ -585,6 +590,17 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
|||||||
|
|
||||||
将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。
|
将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。
|
||||||
|
|
||||||
|
### 从魔乐社区下载
|
||||||
|
|
||||||
|
您也可以通过下述方法使用魔乐社区,在魔乐社区上下载数据集和模型。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_OPENMIND_HUB=1 # Windows 使用 `set USE_OPENMIND_HUB=1`
|
||||||
|
```
|
||||||
|
|
||||||
|
将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔乐社区](https://modelers.cn/models)查看所有可用的模型,例如 `TeleAI/TeleChat-7B-pt`。
|
||||||
|
|
||||||
|
|
||||||
### 使用 W&B 面板
|
### 使用 W&B 面板
|
||||||
|
|
||||||
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。
|
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。
|
||||||
|
@ -38,6 +38,7 @@ Force check imports: FORCE_CHECK_IMPORTS=1
|
|||||||
Force using torchrun: FORCE_TORCHRUN=1
|
Force using torchrun: FORCE_TORCHRUN=1
|
||||||
Set logging verbosity: LLAMAFACTORY_VERBOSITY=WARN
|
Set logging verbosity: LLAMAFACTORY_VERBOSITY=WARN
|
||||||
Use modelscope: USE_MODELSCOPE_HUB=1
|
Use modelscope: USE_MODELSCOPE_HUB=1
|
||||||
|
Use openmind: USE_OPENMIND_HUB=1
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from .extras.env import VERSION
|
from .extras.env import VERSION
|
||||||
|
@ -53,7 +53,7 @@ def _load_single_dataset(
|
|||||||
"""
|
"""
|
||||||
logger.info("Loading dataset {}...".format(dataset_attr))
|
logger.info("Loading dataset {}...".format(dataset_attr))
|
||||||
data_path, data_name, data_dir, data_files = None, None, None, None
|
data_path, data_name, data_dir, data_files = None, None, None, None
|
||||||
if dataset_attr.load_from in ["hf_hub", "ms_hub"]:
|
if dataset_attr.load_from in ["om_hub", "hf_hub", "ms_hub"]:
|
||||||
data_path = dataset_attr.dataset_name
|
data_path = dataset_attr.dataset_name
|
||||||
data_name = dataset_attr.subset
|
data_name = dataset_attr.subset
|
||||||
data_dir = dataset_attr.folder
|
data_dir = dataset_attr.folder
|
||||||
@ -84,7 +84,24 @@ def _load_single_dataset(
|
|||||||
else:
|
else:
|
||||||
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from))
|
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from))
|
||||||
|
|
||||||
if dataset_attr.load_from == "ms_hub":
|
if dataset_attr.load_from == "om_hub":
|
||||||
|
try:
|
||||||
|
from openmind import OmDataset
|
||||||
|
from openmind.utils.hub import OM_DATASETS_CACHE
|
||||||
|
cache_dir = model_args.cache_dir or OM_DATASETS_CACHE
|
||||||
|
dataset = OmDataset.load_dataset(
|
||||||
|
path=data_path,
|
||||||
|
name=data_name,
|
||||||
|
data_dir=data_dir,
|
||||||
|
data_files=data_files,
|
||||||
|
split=data_args.split,
|
||||||
|
cache_dir=cache_dir,
|
||||||
|
token=model_args.ms_hub_token,
|
||||||
|
streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||||
|
)
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError("Please install openmind via `pip install openmind -U`")
|
||||||
|
elif dataset_attr.load_from == "ms_hub":
|
||||||
require_version("modelscope>=1.11.0", "To fix: pip install modelscope>=1.11.0")
|
require_version("modelscope>=1.11.0", "To fix: pip install modelscope>=1.11.0")
|
||||||
from modelscope import MsDataset
|
from modelscope import MsDataset
|
||||||
from modelscope.utils.config_ds import MS_DATASETS_CACHE
|
from modelscope.utils.config_ds import MS_DATASETS_CACHE
|
||||||
|
@ -20,7 +20,7 @@ from typing import Any, Dict, List, Literal, Optional, Sequence
|
|||||||
from transformers.utils import cached_file
|
from transformers.utils import cached_file
|
||||||
|
|
||||||
from ..extras.constants import DATA_CONFIG
|
from ..extras.constants import DATA_CONFIG
|
||||||
from ..extras.misc import use_modelscope
|
from ..extras.misc import use_openmind, use_modelscope
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -98,7 +98,12 @@ def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -
|
|||||||
dataset_list: List["DatasetAttr"] = []
|
dataset_list: List["DatasetAttr"] = []
|
||||||
for name in dataset_names:
|
for name in dataset_names:
|
||||||
if dataset_info is None: # dataset_dir is ONLINE
|
if dataset_info is None: # dataset_dir is ONLINE
|
||||||
load_from = "ms_hub" if use_modelscope() else "hf_hub"
|
if use_openmind():
|
||||||
|
load_from = "om_hub"
|
||||||
|
if use_modelscope():
|
||||||
|
load_from = "ms_hub"
|
||||||
|
if load_from is None:
|
||||||
|
load_from = "hf_hub"
|
||||||
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
||||||
dataset_list.append(dataset_attr)
|
dataset_list.append(dataset_attr)
|
||||||
continue
|
continue
|
||||||
@ -106,11 +111,14 @@ def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -
|
|||||||
if name not in dataset_info:
|
if name not in dataset_info:
|
||||||
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
|
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
|
||||||
|
|
||||||
|
has_om_url = "om_hub_url" in dataset_info[name]
|
||||||
has_hf_url = "hf_hub_url" in dataset_info[name]
|
has_hf_url = "hf_hub_url" in dataset_info[name]
|
||||||
has_ms_url = "ms_hub_url" in dataset_info[name]
|
has_ms_url = "ms_hub_url" in dataset_info[name]
|
||||||
|
|
||||||
if has_hf_url or has_ms_url:
|
if has_om_url or has_hf_url or has_ms_url:
|
||||||
if (use_modelscope() and has_ms_url) or (not has_hf_url):
|
if (use_openmind() and has_om_url) or (not has_hf_url):
|
||||||
|
dataset_attr = DatasetAttr("om_hub", dataset_name=dataset_info[name]["om_hub_url"])
|
||||||
|
elif (use_modelscope() and has_ms_url) or (not has_hf_url):
|
||||||
dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"])
|
dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"])
|
||||||
else:
|
else:
|
||||||
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
|
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
|
||||||
|
@ -231,10 +231,21 @@ def torch_gc() -> None:
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
def try_download_model_from_ms(model_args: "ModelArguments") -> str:
|
def try_download_model_from_other_hub(model_args: "ModelArguments") -> str:
|
||||||
if not use_modelscope() or os.path.exists(model_args.model_name_or_path):
|
if (not use_openmind() and not use_modelscope()) or os.path.exists(model_args.model_name_or_path):
|
||||||
return model_args.model_name_or_path
|
return model_args.model_name_or_path
|
||||||
|
|
||||||
|
if use_openmind():
|
||||||
|
try:
|
||||||
|
import openmind
|
||||||
|
from openmind.utils.hub import snapshot_download
|
||||||
|
|
||||||
|
revision = "main" if model_args.model_revision == "main" else model_args.model_revision
|
||||||
|
return snapshot_download(model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir)
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError("Please install openmind and openmind_hub via `pip install openmind -U`")
|
||||||
|
|
||||||
|
if use_modelscope():
|
||||||
try:
|
try:
|
||||||
from modelscope import snapshot_download
|
from modelscope import snapshot_download
|
||||||
|
|
||||||
@ -243,6 +254,8 @@ def try_download_model_from_ms(model_args: "ModelArguments") -> str:
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||||
|
|
||||||
|
def use_openmind() -> bool:
|
||||||
|
return os.environ.get("USE_OPENMIND_HUB", "0").lower() in ["true", "1"]
|
||||||
|
|
||||||
def use_modelscope() -> bool:
|
def use_modelscope() -> bool:
|
||||||
return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]
|
return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]
|
||||||
|
@ -19,7 +19,7 @@ from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Se
|
|||||||
from trl import AutoModelForCausalLMWithValueHead
|
from trl import AutoModelForCausalLMWithValueHead
|
||||||
|
|
||||||
from ..extras.logging import get_logger
|
from ..extras.logging import get_logger
|
||||||
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_ms
|
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_other_hub
|
||||||
from .adapter import init_adapter
|
from .adapter import init_adapter
|
||||||
from .model_utils.liger_kernel import apply_liger_kernel
|
from .model_utils.liger_kernel import apply_liger_kernel
|
||||||
from .model_utils.misc import register_autoclass
|
from .model_utils.misc import register_autoclass
|
||||||
@ -50,7 +50,7 @@ def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
|||||||
Note: including inplace operation of model_args.
|
Note: including inplace operation of model_args.
|
||||||
"""
|
"""
|
||||||
skip_check_imports()
|
skip_check_imports()
|
||||||
model_args.model_name_or_path = try_download_model_from_ms(model_args)
|
model_args.model_name_or_path = try_download_model_from_other_hub(model_args)
|
||||||
return {
|
return {
|
||||||
"trust_remote_code": True,
|
"trust_remote_code": True,
|
||||||
"cache_dir": model_args.cache_dir,
|
"cache_dir": model_args.cache_dir,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user