mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-23 23:30:36 +08:00
[breaking] support transformers 4.48 (#6628)
Former-commit-id: f154ab175c513a4d7bb866bf2cffc34b77b50508
This commit is contained in:
@@ -29,7 +29,7 @@ from trl.trainer import disable_dropout_in_model
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
|
||||
from ...extras.packages import is_transformers_version_greater_than
|
||||
from ..callbacks import SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
|
||||
|
||||
@@ -282,19 +282,12 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
|
||||
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
|
||||
r"""
|
||||
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
|
||||
Subclass and override to accept extra kwargs.
|
||||
"""
|
||||
loss = super().compute_loss(model, inputs, return_outputs)
|
||||
if is_transformers_version_equal_to_4_46() and kwargs.get("num_items_in_batch"):
|
||||
if return_outputs:
|
||||
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
|
||||
else:
|
||||
loss = loss / self.args.gradient_accumulation_steps
|
||||
|
||||
return loss
|
||||
return super().compute_loss(model, inputs, return_outputs)
|
||||
|
||||
@override
|
||||
def log(self, logs: Dict[str, float]) -> None:
|
||||
def log(self, logs: Dict[str, float], *args, **kwargs) -> None:
|
||||
r"""
|
||||
Log `logs` on the various objects watching training, including stored metrics.
|
||||
"""
|
||||
@@ -318,4 +311,4 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
if not key.startswith("dummy_"):
|
||||
logs[key] = metric
|
||||
|
||||
return Trainer.log(self, logs)
|
||||
return Trainer.log(self, logs, *args, **kwargs)
|
||||
|
||||
Reference in New Issue
Block a user