use pre-commit

This commit is contained in:
hiyouga
2024-10-29 09:07:46 +00:00
parent 77666bd227
commit 21db8ed2f4
86 changed files with 1048 additions and 1064 deletions

View File

@@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is based on the HuggingFace's PEFT library.
@@ -54,7 +53,7 @@ def quantize_pissa(
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=lora_dropout,
target_modules=lora_target,
init_lora_weights="pissa" if pissa_iter == -1 else "pissa_niter_{}".format(pissa_iter),
init_lora_weights="pissa" if pissa_iter == -1 else f"pissa_niter_{pissa_iter}",
)
# Init PiSSA model
@@ -65,17 +64,17 @@ def quantize_pissa(
setattr(peft_model.peft_config["default"], "base_model_name_or_path", os.path.abspath(output_dir))
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply pissa again
peft_model.save_pretrained(pissa_dir, safe_serialization=save_safetensors)
print("Adapter weights saved in {}".format(pissa_dir))
print(f"Adapter weights saved in {pissa_dir}")
# Save base model
base_model: "PreTrainedModel" = peft_model.unload()
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(output_dir)
print("Model weights saved in {}".format(output_dir))
print(f"Model weights saved in {output_dir}")
print("- Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("adapter_name_or_path: {}".format(pissa_dir))
print(f"model_name_or_path: {output_dir}")
print(f"adapter_name_or_path: {pissa_dir}")
print("finetuning_type: lora")
print("pissa_init: false")
print("pissa_convert: true")