add multimodal LLM BLIP-2 and InstructBLIP

Former-commit-id: a730f89a972f1a9d37c718c716f199cb8d4903b2
This commit is contained in:
BUAADreamer
2024-04-23 18:45:43 +08:00
parent 257bd09132
commit 20e05970ab
18 changed files with 4982 additions and 39 deletions

View File

@@ -0,0 +1,3 @@
from .workflow import run_sft_mm
__all__ = ["run_sft_mm"]

View File

@@ -0,0 +1,69 @@
import json
import os
from dataclasses import dataclass
import torch
from torch.utils.data import Dataset as Dataset_torch
from datasets import Dataset
from PIL import Image
from transformers import AutoProcessor
class ImageCaptioningDataset(Dataset_torch):
def __init__(self, dataset: Dataset, image_path: str, processor: AutoProcessor):
self.processor = processor
self.dataset = dataset
self.image_path = image_path
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
source = self.dataset[idx]
image_id = source['image']
image = Image.open(os.path.join(self.image_path, image_id))
convs = source['conversations']
prompt = convs[0]['value']
label = convs[1]['value']
image_inputs = self.processor(image, return_tensors="pt")
image_inputs = {k: v.squeeze() for k, v in image_inputs.items()}
inputs = {
"input_ids": prompt,
"labels": label,
}
for key in image_inputs:
inputs[key] = image_inputs[key]
return inputs
@dataclass
class DataCollatorForVis2Seq:
processor: AutoProcessor
use_qformer: bool = False
def __call__(self, features, return_tensors=None):
processed_batch = {}
for key in features[0].keys():
if key == 'pixel_values':
processed_batch[key] = torch.stack([example[key] for example in features])
elif key == 'input_ids':
text_inputs = self.processor.tokenizer(
[example[key] for example in features], padding="max_length", return_tensors="pt",
max_length=512,
)
processed_batch["input_ids"] = text_inputs["input_ids"]
processed_batch["attention_mask"] = text_inputs["attention_mask"]
if self.use_qformer:
qformer_text_inputs = self.processor.qformer_tokenizer(
[example[key] for example in features], padding="max_length", return_tensors="pt",
max_length=512,
)
processed_batch["qformer_input_ids"] = qformer_text_inputs["input_ids"]
processed_batch["qformer_attention_mask"] = qformer_text_inputs["attention_mask"]
elif key == 'labels':
text_inputs = self.processor.tokenizer(
[example[key] for example in features], padding="max_length", return_tensors="pt",
max_length=512,
)
processed_batch["labels"] = text_inputs["input_ids"]
return processed_batch

View File

@@ -0,0 +1,61 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
import numpy as np
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
if TYPE_CHECKING:
from transformers.tokenization_utils import PreTrainedTokenizer
if is_jieba_available():
import jieba # type: ignore
if is_nltk_available():
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
if is_rouge_available():
from rouge_chinese import Rouge
@dataclass
class ComputeMetrics:
r"""
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
"""
tokenizer: "PreTrainedTokenizer"
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
r"""
Uses the model predictions to compute metrics.
"""
preds, labels = eval_preds
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
for pred, label in zip(decoded_preds, decoded_labels):
hypothesis = list(jieba.cut(pred))
reference = list(jieba.cut(label))
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
else:
rouge = Rouge()
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
result = scores[0]
for k, v in result.items():
score_dict[k].append(round(v["f"] * 100, 4))
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
return {k: float(np.mean(v)) for k, v in score_dict.items()}

View File

@@ -0,0 +1,137 @@
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
from peft import PeftModelForCausalLM
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
# def compute_loss(self, model, inputs, return_outputs=False):
# print(inputs.keys())
# device = "cuda"
# input_ids = inputs.get("input_ids").to(device)
# pixel_values = inputs.get("pixel_values").to(device, torch.float16)
# attention_mask = inputs.get("attention_mask").to(device)
# labels = inputs.get("labels").to(device)
#
# outputs = model(input_ids=input_ids,
# pixel_values=pixel_values,
# labels=labels,
# # attention_mask=attention_mask,
# )
# loss = outputs.loss
# print("Loss:", loss.item())
# return (loss, outputs) if return_outputs else loss
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def prediction_step(
self,
model: "torch.nn.Module",
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
r"""
Removes the prompt part in the generated tokens.
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
"""
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
def save_predictions(self, predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len):
preds[i] = np.concatenate(
(preds[i][pad_len[0]:], preds[i][: pad_len[0]]), axis=-1
) # move pad token to last
decoded_labels = self.tokenizer.batch_decode(
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for label, pred in zip(decoded_labels, decoded_preds):
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
writer.write("\n".join(res))

View File

@@ -0,0 +1,105 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
import os
from typing import TYPE_CHECKING, List, Optional
import torch
from PIL import Image
from torch.utils.data import Dataset
from transformers import DataCollatorForSeq2Seq, LlavaNextForConditionalGeneration, AutoModelForVision2Seq
from ...data import split_dataset, get_mm_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer, load_processor, load_mm_model
from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer
from .collator import DataCollatorForVis2Seq, ImageCaptioningDataset
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
def run_sft_mm(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
processor = load_processor(model_args)
tokenizer = processor.tokenizer
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train)
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
splited_dataset = split_dataset(dataset, data_args, training_args)
splited_dataset['train_dataset'].set_format(type=splited_dataset['train_dataset'].format["type"],
columns=list(splited_dataset['train_dataset'].features.keys()))
splited_dataset['eval_dataset'].set_format(type=splited_dataset['eval_dataset'].format["type"],
columns=list(splited_dataset['eval_dataset'].features.keys()))
train_dataset = ImageCaptioningDataset(splited_dataset['train_dataset'], data_args.image_path, processor)
eval_dataset = ImageCaptioningDataset(splited_dataset['eval_dataset'], data_args.image_path, processor)
data_collator = DataCollatorForVis2Seq(
processor=processor,
use_qformer=model_args.use_qformer,
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
# Initialize our Trainer
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)

View File

@@ -14,12 +14,11 @@ from .ppo import run_ppo
from .pt import run_pt
from .rm import run_rm
from .sft import run_sft
from .sftmm import run_sft_mm
if TYPE_CHECKING:
from transformers import TrainerCallback
logger = get_logger(__name__)
@@ -31,6 +30,8 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "sft_mm":
run_sft_mm(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "rm":
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "ppo":