mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 20:00:36 +08:00
[v1] add accelerator (#9607)
This commit is contained in:
@@ -19,7 +19,7 @@ from datasets import load_dataset
|
||||
|
||||
from llamafactory.v1.config.data_args import DataArguments
|
||||
from llamafactory.v1.core.data_engine import DataEngine
|
||||
from llamafactory.v1.plugins.data_plugins.converter import get_converter
|
||||
from llamafactory.v1.plugins.data_plugins.converter import DataConverterPlugin
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
@@ -49,99 +49,27 @@ def test_alpaca_converter(num_samples: int):
|
||||
assert data_engine[index] == {"_dataset_name": "tiny_dataset", **expected_data}
|
||||
|
||||
|
||||
def test_sharegpt_converter_invalid():
|
||||
def test_sharegpt_converter():
|
||||
example = {
|
||||
"conversations": [
|
||||
{
|
||||
"from": "system",
|
||||
"value": "Processes historical market data to generate trading signals "
|
||||
"based on specified technical indicators.",
|
||||
},
|
||||
{
|
||||
"from": "human",
|
||||
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
|
||||
"Could you proceed with these function calls to assist me with the task?",
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
|
||||
"'name': 'backtest_trading_signals'}```\n",
|
||||
},
|
||||
{
|
||||
"from": "tool",
|
||||
"value": '<tool id="D2">\n{"analysis": {"RSI_signals": [{"date": "2025-01-10", '
|
||||
'"symbol": "AAPL", "signal": "Buy"}]}}}\n</tool>\n',
|
||||
},
|
||||
{"from": "system", "value": "System"},
|
||||
{"from": "human", "value": "User"},
|
||||
{"from": "gpt", "value": "Assistant"},
|
||||
]
|
||||
}
|
||||
dataset_converter = get_converter("sharegpt")
|
||||
assert dataset_converter(example) == {"messages": []}
|
||||
|
||||
|
||||
def test_sharegpt_converter_valid():
|
||||
example = {
|
||||
"conversations": [
|
||||
{
|
||||
"from": "system",
|
||||
"value": "Processes historical market data to generate trading signals based on "
|
||||
"specified technical indicators.",
|
||||
},
|
||||
{
|
||||
"from": "human",
|
||||
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
|
||||
"Could you proceed with these function calls to assist me with the task?",
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
|
||||
"'name': 'backtest_trading_signals'}```\n",
|
||||
},
|
||||
]
|
||||
}
|
||||
dataset_converter = get_converter("sharegpt")
|
||||
expected_data = {
|
||||
"messages": [
|
||||
{
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"value": "Processes historical market data to generate trading signals based on "
|
||||
"specified technical indicators.",
|
||||
}
|
||||
],
|
||||
"loss_weight": 0.0,
|
||||
"role": "system",
|
||||
},
|
||||
{
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"value": "I possess a detailed dataset, 'Historical_Market_Data.csv'. "
|
||||
"Could you proceed with these function calls to assist me with the task?",
|
||||
}
|
||||
],
|
||||
"loss_weight": 0.0,
|
||||
"role": "user",
|
||||
},
|
||||
{
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"value": "```tool_call\n{'arguments': '{\"data_file\": \"Historical_Market_Data.csv\"]}', "
|
||||
"'name': 'backtest_trading_signals'}```\n",
|
||||
}
|
||||
],
|
||||
"loss_weight": 1.0,
|
||||
"role": "assistant",
|
||||
},
|
||||
{"content": [{"type": "text", "value": "System"}], "loss_weight": 0.0, "role": "system"},
|
||||
{"content": [{"type": "text", "value": "User"}], "loss_weight": 0.0, "role": "user"},
|
||||
{"content": [{"type": "text", "value": "Assistant"}], "loss_weight": 1.0, "role": "assistant"},
|
||||
]
|
||||
}
|
||||
assert dataset_converter(example) == expected_data
|
||||
assert DataConverterPlugin("sharegpt")(example) == expected_data
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_pair_converter(num_samples: int):
|
||||
data_args = DataArguments(dataset="frozenleaves/tiny-dpo/dataset_info.yaml")
|
||||
data_args = DataArguments(dataset="llamafactory/tiny-preference-dataset/dataset_info.yaml")
|
||||
data_engine = DataEngine(data_args)
|
||||
original_data = load_dataset("HuggingFaceH4/orca_dpo_pairs", split="train_prefs")
|
||||
indexes = random.choices(range(len(data_engine)), k=num_samples)
|
||||
@@ -189,6 +117,5 @@ def test_pair_converter(num_samples: int):
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_alpaca_converter(1)
|
||||
test_sharegpt_converter_invalid()
|
||||
test_sharegpt_converter_valid()
|
||||
test_sharegpt_converter()
|
||||
test_pair_converter(1)
|
||||
|
||||
@@ -17,10 +17,13 @@ from unittest.mock import MagicMock, patch
|
||||
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
from llamafactory.v1.accelerator.helper import get_current_accelerator
|
||||
|
||||
|
||||
class TestKernelPlugin(unittest.TestCase):
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_apply_kernel(self, mock_get_accelerator):
|
||||
get_current_accelerator.cache_clear()
|
||||
mock_device = MagicMock()
|
||||
mock_device.type = "npu"
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
@@ -47,6 +50,7 @@ class TestKernelPlugin(unittest.TestCase):
|
||||
class Test_Use_V1_Kernels(unittest.TestCase):
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_use_v1_kernels(self, mock_get_accelerator):
|
||||
get_current_accelerator.cache_clear()
|
||||
mock_device = MagicMock()
|
||||
mock_device.type = "npu"
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
|
||||
Reference in New Issue
Block a user