mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-18 04:40:35 +08:00
[v1] add accelerator (#9607)
This commit is contained in:
0
src/llamafactory/v1/utils/__init__.py
Normal file
0
src/llamafactory/v1/utils/__init__.py
Normal file
13
src/llamafactory/v1/utils/constants.py
Normal file
13
src/llamafactory/v1/utils/constants.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
123
src/llamafactory/v1/utils/logging.py
Normal file
123
src/llamafactory/v1/utils/logging.py
Normal file
@@ -0,0 +1,123 @@
|
||||
# Copyright 2025 Optuna, HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v5.0.0rc0/src/transformers/utils/logging.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
from functools import lru_cache
|
||||
from typing import Optional
|
||||
|
||||
|
||||
_thread_lock = threading.RLock()
|
||||
_default_handler: Optional["logging.Handler"] = None
|
||||
_default_log_level: "logging._Level" = logging.INFO
|
||||
|
||||
|
||||
class _Logger(logging.Logger):
|
||||
r"""A logger that supports rank0 logging."""
|
||||
|
||||
def info_rank0(self, *args, **kwargs) -> None:
|
||||
self.info(*args, **kwargs)
|
||||
|
||||
def warning_rank0(self, *args, **kwargs) -> None:
|
||||
self.warning(*args, **kwargs)
|
||||
|
||||
def warning_rank0_once(self, *args, **kwargs) -> None:
|
||||
self.warning(*args, **kwargs)
|
||||
|
||||
|
||||
def _get_default_logging_level() -> "logging._Level":
|
||||
r"""Return the default logging level."""
|
||||
env_level_str = os.getenv("LLAMAFACTORY_VERBOSITY", None)
|
||||
if env_level_str:
|
||||
if env_level_str.upper() in logging._nameToLevel:
|
||||
return logging._nameToLevel[env_level_str.upper()]
|
||||
else:
|
||||
raise ValueError(f"Unknown logging level: {env_level_str}.")
|
||||
|
||||
return _default_log_level
|
||||
|
||||
|
||||
def _get_library_name() -> str:
|
||||
return __name__.split(".")[0]
|
||||
|
||||
|
||||
def _get_library_root_logger() -> "_Logger":
|
||||
return logging.getLogger(_get_library_name())
|
||||
|
||||
|
||||
def _configure_library_root_logger() -> None:
|
||||
r"""Configure root logger using a stdout stream handler with an explicit format."""
|
||||
global _default_handler
|
||||
|
||||
with _thread_lock:
|
||||
if _default_handler: # already configured
|
||||
return
|
||||
|
||||
formatter = logging.Formatter(
|
||||
fmt="[%(levelname)s|%(asctime)s] %(name)s:%(lineno)s >> %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
_default_handler = logging.StreamHandler(sys.stdout)
|
||||
_default_handler.setFormatter(formatter)
|
||||
library_root_logger = _get_library_root_logger()
|
||||
library_root_logger.addHandler(_default_handler)
|
||||
library_root_logger.setLevel(_get_default_logging_level())
|
||||
library_root_logger.propagate = False
|
||||
|
||||
|
||||
def get_logger(name: Optional[str] = None) -> "_Logger":
|
||||
r"""Return a logger with the specified name. It it not supposed to be accessed externally."""
|
||||
if name is None:
|
||||
name = _get_library_name()
|
||||
|
||||
_configure_library_root_logger()
|
||||
return logging.getLogger(name)
|
||||
|
||||
|
||||
def add_handler(handler: "logging.Handler") -> None:
|
||||
r"""Add a handler to the root logger."""
|
||||
_configure_library_root_logger()
|
||||
_get_library_root_logger().addHandler(handler)
|
||||
|
||||
|
||||
def remove_handler(handler: logging.Handler) -> None:
|
||||
r"""Remove a handler to the root logger."""
|
||||
_configure_library_root_logger()
|
||||
_get_library_root_logger().removeHandler(handler)
|
||||
|
||||
|
||||
def info_rank0(self: "logging.Logger", *args, **kwargs) -> None:
|
||||
if int(os.getenv("LOCAL_RANK", "0")) == 0:
|
||||
self.info(*args, **kwargs)
|
||||
|
||||
|
||||
def warning_rank0(self: "logging.Logger", *args, **kwargs) -> None:
|
||||
if int(os.getenv("LOCAL_RANK", "0")) == 0:
|
||||
self.warning(*args, **kwargs)
|
||||
|
||||
|
||||
@lru_cache(None)
|
||||
def warning_rank0_once(self: "logging.Logger", *args, **kwargs) -> None:
|
||||
if int(os.getenv("LOCAL_RANK", "0")) == 0:
|
||||
self.warning(*args, **kwargs)
|
||||
|
||||
|
||||
logging.Logger.info_rank0 = info_rank0
|
||||
logging.Logger.warning_rank0 = warning_rank0
|
||||
logging.Logger.warning_rank0_once = warning_rank0_once
|
||||
43
src/llamafactory/v1/utils/packages.py
Normal file
43
src/llamafactory/v1/utils/packages.py
Normal file
@@ -0,0 +1,43 @@
|
||||
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/utils/import_utils.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import importlib.metadata
|
||||
import importlib.util
|
||||
from functools import lru_cache
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from packaging.version import Version
|
||||
|
||||
|
||||
def _is_package_available(name: str) -> bool:
|
||||
return importlib.util.find_spec(name) is not None
|
||||
|
||||
|
||||
def _get_package_version(name: str) -> "Version":
|
||||
try:
|
||||
return version.parse(importlib.metadata.version(name))
|
||||
except Exception:
|
||||
return version.parse("0.0.0")
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_transformers_version_greater_than(content: str):
|
||||
return _get_package_version("transformers") >= version.parse(content)
|
||||
86
src/llamafactory/v1/utils/plugin.py
Normal file
86
src/llamafactory/v1/utils/plugin.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Callable, Optional
|
||||
|
||||
from . import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BasePlugin:
|
||||
"""Base class for plugins.
|
||||
|
||||
A plugin is a callable object that can be registered and called by name.
|
||||
"""
|
||||
|
||||
_registry: dict[str, Callable] = {}
|
||||
|
||||
def __init__(self, name: Optional[str] = None):
|
||||
"""Initialize the plugin with a name.
|
||||
|
||||
Args:
|
||||
name (str): The name of the plugin.
|
||||
"""
|
||||
self.name = name
|
||||
|
||||
@property
|
||||
def register(self) -> Callable:
|
||||
"""Decorator to register a function as a plugin.
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
@PrintPlugin("hello").register()
|
||||
def print_hello():
|
||||
print("Hello world!")
|
||||
```
|
||||
"""
|
||||
if self.name is None:
|
||||
raise ValueError("Plugin name is not specified.")
|
||||
|
||||
if self.name in self._registry:
|
||||
logger.warning_rank0_once(f"Plugin {self.name} is already registered.")
|
||||
|
||||
def decorator(func: Callable) -> Callable:
|
||||
self._registry[self.name] = func
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
def __call__(self, *args, **kwargs) -> Callable:
|
||||
"""Call the registered function with the given arguments.
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
PrintPlugin("hello")()
|
||||
```
|
||||
"""
|
||||
if self.name not in self._registry:
|
||||
raise ValueError(f"Plugin {self.name} is not registered.")
|
||||
|
||||
return self._registry[self.name](*args, **kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
class PrintPlugin(BasePlugin):
|
||||
pass
|
||||
|
||||
@PrintPlugin("hello").register
|
||||
def print_hello():
|
||||
print("Hello world!")
|
||||
|
||||
PrintPlugin("hello")()
|
||||
96
src/llamafactory/v1/utils/types.py
Normal file
96
src/llamafactory/v1/utils/types.py
Normal file
@@ -0,0 +1,96 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, Literal, TypedDict, Union
|
||||
|
||||
from typing_extensions import NotRequired
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import datasets
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import transformers
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel
|
||||
|
||||
Tensor = torch.Tensor
|
||||
TensorLike = Union[int, float, list[int], list[float], np.ndarray, Tensor]
|
||||
TorchDataset = Union[torch.utils.data.Dataset, torch.utils.data.IterableDataset]
|
||||
HFDataset = Union[datasets.Dataset, datasets.IterableDataset]
|
||||
DataCollator = transformers.DataCollator
|
||||
DataLoader = torch.utils.data.DataLoader
|
||||
HFConfig = transformers.PretrainedConfig
|
||||
HFModel = transformers.PreTrainedModel
|
||||
DistModel = Union[torch.nn.parallel.DistributedDataParallel, FullyShardedDataParallel]
|
||||
Processor = Union[transformers.PreTrainedTokenizer, transformers.ProcessorMixin]
|
||||
Optimizer = torch.optim.Optimizer
|
||||
Scheduler = torch.optim.lr_scheduler.LRScheduler
|
||||
else:
|
||||
Tensor = None
|
||||
TensorLike = None
|
||||
TorchDataset = None
|
||||
HFDataset = None
|
||||
DataCollator = None
|
||||
DataLoader = None
|
||||
HFConfig = None
|
||||
HFModel = None
|
||||
DistModel = None
|
||||
Processor = None
|
||||
Optimizer = None
|
||||
Scheduler = None
|
||||
|
||||
|
||||
class DatasetInfo(TypedDict, total=False):
|
||||
path: str
|
||||
"""Local file path."""
|
||||
source: NotRequired[Literal["hf_hub", "ms_hub", "local"]]
|
||||
"""Dataset source, default to "hf_hub"."""
|
||||
split: NotRequired[str]
|
||||
"""Dataset split, default to "train"."""
|
||||
converter: NotRequired[str]
|
||||
"""Dataset converter, default to None."""
|
||||
size: NotRequired[int]
|
||||
"""Number of samples, default to all samples."""
|
||||
weight: NotRequired[float]
|
||||
"""Dataset weight, default to 1.0."""
|
||||
streaming: NotRequired[bool]
|
||||
"""Is streaming dataset, default to False."""
|
||||
|
||||
|
||||
class Content(TypedDict):
|
||||
type: Literal["text", "reasoning", "tools", "tool_calls", "image_url"]
|
||||
value: str
|
||||
|
||||
|
||||
class Message(TypedDict):
|
||||
role: Literal["system", "user", "assistant", "tool"]
|
||||
content: list[Content]
|
||||
loss_weight: float
|
||||
|
||||
|
||||
class SFTSample(TypedDict):
|
||||
messages: list[Message]
|
||||
extra_info: NotRequired[str]
|
||||
_dataset_name: NotRequired[str]
|
||||
|
||||
|
||||
class DPOSample(TypedDict):
|
||||
chosen_messages: list[Message]
|
||||
rejected_messages: list[Message]
|
||||
extra_info: NotRequired[str]
|
||||
_dataset_name: NotRequired[str]
|
||||
|
||||
|
||||
Sample = Union[SFTSample, DPOSample]
|
||||
Reference in New Issue
Block a user