[v1] add accelerator (#9607)

This commit is contained in:
Yaowei Zheng
2025-12-12 19:22:06 +08:00
committed by GitHub
parent 4fd94141a4
commit 203069e11c
36 changed files with 941 additions and 443 deletions

View File

@@ -28,6 +28,21 @@ from .sample_args import SampleArguments
from .training_args import TrainingArguments
def validate_args(
data_args: DataArguments,
model_args: ModelArguments,
training_args: TrainingArguments,
sample_args: SampleArguments,
):
"""Validate arguments."""
if (
model_args.quant_config is not None
and training_args.dist_config is not None
and training_args.dist_config.name == "deepspeed"
):
raise ValueError("Quantization is not supported with deepspeed backend.")
def get_args(
args: Optional[Union[dict[str, Any], list[str]]] = None,
) -> tuple[DataArguments, ModelArguments, TrainingArguments, SampleArguments]:
@@ -56,6 +71,8 @@ def get_args(
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
validate_args(*parsed_args)
return tuple(parsed_args)

View File

@@ -0,0 +1,105 @@
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v5.0.0rc0/src/transformers/training_args.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from enum import Enum, unique
from typing import Any, Optional, Union
class PluginConfig(dict):
"""Dictionary that allows attribute access."""
@property
def name(self) -> str:
"""Plugin name."""
if "name" not in self:
raise ValueError("Plugin configuration must have a 'name' field.")
return self["name"]
def __getattr__(self, key: str) -> Any:
try:
return self[key]
except KeyError:
raise AttributeError(f"Attribute {key} not found.")
def __setattr__(self, key: str, value: Any):
self[key] = value
PluginArgument = Optional[Union[PluginConfig, dict, str]]
@unique
class AutoClass(str, Enum):
"""Auto class for model config."""
CAUSALLM = "llm"
CLASSIFICATION = "cls"
OTHER = "other"
@unique
class SampleBackend(str, Enum):
HF = "hf"
VLLM = "vllm"
def _convert_str_dict(data: dict) -> dict:
"""Parse string representation inside the dictionary.
Args:
data: The string or dictionary to convert.
Returns:
The converted dictionary.
"""
for key, value in data.items():
if isinstance(value, dict):
data[key] = _convert_str_dict(value)
elif isinstance(value, str):
if value.lower() in ("true", "false"):
data[key] = value.lower() == "true"
elif value.isdigit():
data[key] = int(value)
elif value.replace(".", "", 1).isdigit():
data[key] = float(value)
return data
def get_plugin_config(config: PluginArgument) -> Optional[PluginConfig]:
"""Get the plugin configuration from the argument value.
Args:
config: The argument value to get the plugin configuration from.
Returns:
The plugin configuration.
"""
if config is None:
return None
if isinstance(config, str) and config.startswith("{"):
config = json.loads(config)
config = _convert_str_dict(config)
if "name" not in config:
raise ValueError("Plugin configuration must have a 'name' field.")
return PluginConfig(config)

View File

@@ -15,6 +15,8 @@
from dataclasses import dataclass, field
from .arg_utils import AutoClass, PluginConfig, get_plugin_config
@dataclass
class ModelArguments:
@@ -29,7 +31,24 @@ class ModelArguments:
default=True,
metadata={"help": "Use fast processor from Hugging Face."},
)
auto_model_class: str = field(
default="causallm",
auto_class: AutoClass = field(
default=AutoClass.CAUSALLM,
metadata={"help": "Model class from Hugging Face."},
)
peft_config: PluginConfig = field(
default=None,
metadata={"help": "PEFT configuration for the model."},
)
kernel_config: PluginConfig = field(
default=None,
metadata={"help": "Kernel configuration for the model."},
)
quant_config: PluginConfig = field(
default=None,
metadata={"help": "Quantization configuration for the model."},
)
def __post_init__(self) -> None:
self.peft_config = get_plugin_config(self.peft_config)
self.kernel_config = get_plugin_config(self.kernel_config)
self.quant_config = get_plugin_config(self.quant_config)

View File

@@ -14,12 +14,8 @@
from dataclasses import dataclass, field
from enum import Enum
class SampleBackend(Enum):
HF = "hf"
VLLM = "vllm"
from .arg_utils import SampleBackend
@dataclass

View File

@@ -15,6 +15,8 @@
from dataclasses import dataclass, field
from .arg_utils import PluginArgument, get_plugin_config
@dataclass
class TrainingArguments:
@@ -38,3 +40,10 @@ class TrainingArguments:
default=False,
metadata={"help": "Use bf16 for training."},
)
dist_config: PluginArgument = field(
default=None,
metadata={"help": "Distribution configuration for training."},
)
def __post_init__(self) -> None:
self.dist_config = get_plugin_config(self.dist_config)