mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-19 05:10:35 +08:00
[v1] add accelerator (#9607)
This commit is contained in:
123
src/llamafactory/v1/accelerator/interface.py
Normal file
123
src/llamafactory/v1/accelerator/interface.py
Normal file
@@ -0,0 +1,123 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
||||
|
||||
from ..utils.types import TensorLike
|
||||
from .helper import ReduceOp, all_reduce, get_current_accelerator, get_rank, get_world_size, is_distributed
|
||||
|
||||
|
||||
@dataclass
|
||||
class DistributedStrategy:
|
||||
"""Distributed strategy."""
|
||||
|
||||
dp_size: Optional[int] = None
|
||||
tp_size: int = 1
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if not is_distributed():
|
||||
self.dp_size = 1
|
||||
elif self.dp_size is None:
|
||||
self.dp_size = get_world_size() // self.tp_size
|
||||
elif self.dp_size * self.tp_size != get_world_size():
|
||||
raise ValueError(
|
||||
f"dp_size * tp_size must equal to world_size, "
|
||||
f"got {self.dp_size} * {self.tp_size} != {get_world_size()}."
|
||||
)
|
||||
|
||||
@property
|
||||
def mesh_shape(self) -> tuple[int, int]:
|
||||
"""Mesh shape."""
|
||||
return (self.dp_size, self.tp_size)
|
||||
|
||||
@property
|
||||
def mesh_dim_names(self) -> tuple[str, str]:
|
||||
"""Mesh dimension names."""
|
||||
return ("dp", "tp")
|
||||
|
||||
|
||||
class DistributedInterface:
|
||||
"""Distributed interface."""
|
||||
|
||||
_instance: Optional["DistributedInterface"] = None
|
||||
_initialized: bool = False
|
||||
|
||||
is_distributed = is_distributed()
|
||||
"""Check if distributed environment is available."""
|
||||
rank = get_rank()
|
||||
"""Global rank."""
|
||||
world_size = get_world_size()
|
||||
"""Global world size."""
|
||||
device_mesh: Optional[DeviceMesh] = None
|
||||
"""Device mesh."""
|
||||
current_accelerator = get_current_accelerator()
|
||||
"""Current accelerator."""
|
||||
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> "DistributedInterface":
|
||||
"""Singleton pattern."""
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
|
||||
return cls._instance
|
||||
|
||||
def __init__(self, strategy: DistributedStrategy) -> None:
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
self.strategy = strategy
|
||||
if self.is_distributed:
|
||||
self.device_mesh = init_device_mesh(
|
||||
device_type=self.current_accelerator.type,
|
||||
mesh_shape=strategy.mesh_shape,
|
||||
mesh_dim_names=strategy.mesh_dim_names,
|
||||
)
|
||||
else:
|
||||
self.device_mesh = None
|
||||
|
||||
self._initialized = True
|
||||
|
||||
def __str__(self) -> str:
|
||||
return (
|
||||
f"DistributedInterface(strategy={self.strategy}), is_distributed={self.is_distributed}, "
|
||||
f"rank={self.rank}, world_size={self.world_size}, "
|
||||
f"device_mesh={self.device_mesh}, current_accelerator={self.current_accelerator}"
|
||||
)
|
||||
|
||||
def dp_rank(self) -> int:
|
||||
"""Data parallel rank."""
|
||||
if self.device_mesh is None:
|
||||
return 0
|
||||
|
||||
return self.device_mesh["dp"].get_rank()
|
||||
|
||||
def dp_size(self) -> int:
|
||||
"""Data parallel size."""
|
||||
if self.device_mesh is None:
|
||||
return 1
|
||||
|
||||
return self.device_mesh["dp"].size()
|
||||
|
||||
def all_reduce_over_dp(self, data: TensorLike, op: ReduceOp = ReduceOp.MEAN) -> TensorLike:
|
||||
"""All reduce tensor."""
|
||||
if self.device_mesh is None:
|
||||
return data
|
||||
|
||||
return all_reduce(data, op, self.device_mesh["dp"].get_group())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(DistributedInterface(DistributedStrategy()))
|
||||
Reference in New Issue
Block a user