mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-27 09:10:35 +08:00
[v1] add accelerator (#9607)
This commit is contained in:
@@ -1,4 +1,7 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2025 Bytedance Ltd. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the Bytedance's VeOmni library.
|
||||
# https://github.com/ByteDance-Seed/VeOmni/blob/v0.1.4/veomni/utils/dist_utils.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -12,12 +15,68 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
from enum import Enum, unique
|
||||
from functools import lru_cache
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from ..utils.types import Tensor, TensorLike
|
||||
|
||||
|
||||
def get_current_accelerator(check_available: bool = True):
|
||||
if TYPE_CHECKING:
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
|
||||
@unique
|
||||
class DeviceType(str, Enum):
|
||||
CPU = "cpu"
|
||||
CUDA = "cuda"
|
||||
META = "meta"
|
||||
MPS = "mps"
|
||||
NPU = "npu"
|
||||
XPU = "xpu"
|
||||
|
||||
|
||||
@unique
|
||||
class ReduceOp(str, Enum):
|
||||
SUM = "sum"
|
||||
MEAN = "mean"
|
||||
MAX = "max"
|
||||
MIN = "min"
|
||||
|
||||
|
||||
def is_distributed() -> bool:
|
||||
"""Check if distributed environment is available."""
|
||||
return os.getenv("RANK") is not None
|
||||
|
||||
|
||||
def get_rank() -> int:
|
||||
"""Get rank."""
|
||||
return int(os.getenv("RANK", "0"))
|
||||
|
||||
|
||||
def get_local_rank() -> int:
|
||||
"""Get local rank."""
|
||||
return int(os.getenv("LOCAL_RANK", "0"))
|
||||
|
||||
|
||||
def get_world_size() -> int:
|
||||
"""Get world size."""
|
||||
return int(os.getenv("WORLD_SIZE", "1"))
|
||||
|
||||
|
||||
def get_local_world_size() -> int:
|
||||
"""Get local world size."""
|
||||
return int(os.getenv("LOCAL_WORLD_SIZE", "1"))
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_current_accelerator(check_available: bool = True) -> torch.device:
|
||||
"""Get current accelerator.
|
||||
|
||||
Note: this api requires torch>=2.7.0, 2.6 or lower will get an AttributeError or RuntimeError
|
||||
@@ -27,26 +86,78 @@ def get_current_accelerator(check_available: bool = True):
|
||||
|
||||
accelerator = torch.accelerator.current_accelerator(check_available=check_available)
|
||||
if accelerator is None:
|
||||
return torch.device("cpu")
|
||||
return torch.device(DeviceType.CPU.value)
|
||||
|
||||
return accelerator
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_npu_available():
|
||||
return get_current_accelerator().type == "npu"
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_cuda_available():
|
||||
return get_current_accelerator().type == "cuda"
|
||||
return get_current_accelerator().type == DeviceType.CUDA
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_xpu_available():
|
||||
return get_current_accelerator().type == "xpu"
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_mps_available():
|
||||
return get_current_accelerator().type == "mps"
|
||||
return get_current_accelerator().type == DeviceType.MPS
|
||||
|
||||
|
||||
def is_torch_npu_available():
|
||||
return get_current_accelerator().type == DeviceType.NPU
|
||||
|
||||
|
||||
def is_torch_xpu_available():
|
||||
return get_current_accelerator().type == DeviceType.XPU
|
||||
|
||||
|
||||
def all_gather(tensor: Tensor, group: Optional["ProcessGroup"] = None) -> Tensor:
|
||||
"""Gathers the tensor from all ranks and concats them along the first dim."""
|
||||
world_size = get_world_size()
|
||||
device = get_current_accelerator()
|
||||
output_tensor = torch.empty(world_size * tensor.numel(), dtype=tensor.dtype, device=device)
|
||||
dist.all_gather_into_tensor(output_tensor, tensor, group=group)
|
||||
return output_tensor.view(-1, *tensor.size()[1:])
|
||||
|
||||
|
||||
def all_reduce(data: TensorLike, op: ReduceOp = ReduceOp.MEAN, group: Optional["ProcessGroup"] = None) -> TensorLike:
|
||||
"""Performs all reduce in the given process group."""
|
||||
device = get_current_accelerator()
|
||||
is_ndarray = isinstance(data, np.ndarray)
|
||||
is_tensor = isinstance(data, torch.Tensor)
|
||||
|
||||
if is_ndarray:
|
||||
data = torch.from_numpy(data)
|
||||
elif not is_tensor:
|
||||
data = torch.tensor(data, dtype=torch.float, device=device)
|
||||
|
||||
reduce_ops = {
|
||||
ReduceOp.MEAN: dist.ReduceOp.SUM,
|
||||
ReduceOp.SUM: dist.ReduceOp.SUM,
|
||||
ReduceOp.MAX: dist.ReduceOp.MAX,
|
||||
ReduceOp.MIN: dist.ReduceOp.MIN,
|
||||
}
|
||||
dist.all_reduce(data, op=reduce_ops[op], group=group)
|
||||
if op == ReduceOp.MEAN: # ReduceOp.AVG is not supported by the NPU backend
|
||||
data /= dist.get_world_size(group=group)
|
||||
|
||||
if is_tensor:
|
||||
return data
|
||||
elif is_ndarray:
|
||||
return data.numpy()
|
||||
elif data.numel() == 1:
|
||||
return data.item()
|
||||
else:
|
||||
return data.tolist()
|
||||
|
||||
|
||||
@contextmanager
|
||||
def main_process_first(local_only: bool = True) -> None:
|
||||
"""A context manager for torch distributed environment to do something on the main process firstly."""
|
||||
if get_world_size() > 1:
|
||||
is_main_process = get_local_rank() == 0 if local_only else get_rank() == 0
|
||||
try:
|
||||
if not is_main_process:
|
||||
dist.barrier()
|
||||
yield
|
||||
finally:
|
||||
if is_main_process:
|
||||
dist.barrier()
|
||||
else:
|
||||
yield
|
||||
|
||||
Reference in New Issue
Block a user