mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
modify style
This commit is contained in:
@@ -50,29 +50,17 @@ def run_sft(
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(
|
||||
model, "_hf_peft_config_loaded", True
|
||||
) # hack here: make model compatible with prediction
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=(
|
||||
8 if tokenizer.padding_side == "right" else None
|
||||
), # for shift short attention
|
||||
label_pad_token_id=(
|
||||
IGNORE_INDEX
|
||||
if data_args.ignore_pad_token_for_loss
|
||||
else tokenizer.pad_token_id
|
||||
),
|
||||
pad_to_multiple_of=(8 if tokenizer.padding_side == "right" else None), # for shift short attention
|
||||
label_pad_token_id=(IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id),
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = (
|
||||
training_args.generation_max_length or data_args.cutoff_len
|
||||
)
|
||||
training_args.generation_num_beams = (
|
||||
data_args.eval_num_beams or training_args.generation_num_beams
|
||||
)
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
if model_args.use_mllm:
|
||||
training_args.remove_unused_columns = False
|
||||
|
||||
@@ -84,25 +72,19 @@ def run_sft(
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=(
|
||||
ComputeMetrics(tokenizer) if training_args.predict_with_generate else None
|
||||
),
|
||||
compute_metrics=(ComputeMetrics(tokenizer) if training_args.predict_with_generate else None),
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["eos_token_id"] = [
|
||||
tokenizer.eos_token_id
|
||||
] + tokenizer.additional_special_tokens_ids
|
||||
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
|
||||
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(
|
||||
resume_from_checkpoint=training_args.resume_from_checkpoint
|
||||
)
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
@@ -113,27 +95,19 @@ def run_sft(
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
if (
|
||||
training_args.predict_with_generate
|
||||
): # eval_loss will be wrong if predict_with_generate is enabled
|
||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
||||
metrics.pop("eval_loss", None)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(
|
||||
dataset, metric_key_prefix="predict", **gen_kwargs
|
||||
)
|
||||
if (
|
||||
training_args.predict_with_generate
|
||||
): # predict_loss will be wrong if predict_with_generate is enabled
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||
predict_results.metrics.pop("predict_loss", None)
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(
|
||||
trainer, model_args, data_args, training_args, finetuning_args
|
||||
)
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
|
||||
Reference in New Issue
Block a user