[v1&WIP] dataloader init (#9645)

This commit is contained in:
Kingsley
2025-12-23 16:29:47 +08:00
committed by GitHub
parent 7901b2f32e
commit 1c8a42d2f8
7 changed files with 981 additions and 18 deletions

View File

@@ -0,0 +1,112 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from llamafactory.v1.utils.batching_queue import DynamicBatchSizeBuffer, TextBatchingQueue
def create_sample(length: int):
"""Helper to create a mock sample with a specific token length."""
return {"input_ids": torch.ones(length), "attention_mask": torch.ones(length)}
class TestDynamicBatchSizeBuffer:
def test_append_and_token_count(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(10))
buffer.append(create_sample(20))
assert len(buffer) == 2
assert buffer.total_token_count == 30
def test_get_samples_within_budget(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(10))
buffer.append(create_sample(10))
buffer.append(create_sample(50)) # This one is large
# Request 25 tokens. Should get the first two (20 tokens total)
samples = buffer.get_samples(max_tokens_per_iteration=25)
assert len(samples) == 2
def test_force_return_first_sample(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(100))
# Even though budget is 50, force=True (default) should return the 100-token sample
samples = buffer.get_samples(max_tokens_per_iteration=50, force=True)
assert len(samples) == 1
assert len(samples[0]["input_ids"]) == 100
def test_flush_removes_used_samples(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(10))
buffer.append(create_sample(20))
# Take the first sample
buffer.get_samples(max_tokens_per_iteration=15)
buffer.flush()
assert len(buffer) == 1
assert buffer.total_token_count == 20
# The remaining sample should now be at the start
remaining = buffer.get_samples(max_tokens_per_iteration=50)
assert len(remaining[0]["input_ids"]) == 20
class TestTextBatchingQueue:
def test_is_full_filled(self):
queue = TextBatchingQueue(token_micro_bsz=100, buffer_size=2)
queue.put_item(create_sample(10))
assert not queue.is_full_filled() # Only 1 sample, buffer_size=2
queue.put_item(create_sample(10))
assert not queue.is_full_filled() # 2 samples, but only 20 tokens (min 100)
queue.put_item(create_sample(90))
assert queue.is_full_filled() # Meets both conditions
def test_warmup_logic(self):
# token_micro_bsz=1000, starts at 200, reaches 1000 at step 10
queue = TextBatchingQueue(token_micro_bsz=1000, bsz_warmup_steps=10, bsz_warmup_init_mbtoken=200)
# Step 0: should be init value
assert queue.get_cur_token_micro_bsz() == 200
# Step 5: halfway through warmup (200 + (800 * 5/10)) = 600
queue._step = 5
assert queue.get_cur_token_micro_bsz() == 600
# Step 11: past warmup
queue._step = 11
assert queue.get_cur_token_micro_bsz() == 1000
def test_get_micro_batch_integration(self):
queue = TextBatchingQueue(token_micro_bsz=50, buffer_size=1)
queue.put_item(create_sample(20))
queue.put_item(create_sample(20))
queue.put_item(create_sample(20))
# At step 0 (warmup not triggered as bsz_warmup_steps is -1 default),
# it should take samples up to 50 tokens.
batch = queue.get_micro_batch(step=0)
assert len(batch) == 2
assert queue.empty() is False
batch_2 = queue.get_micro_batch(step=1)
assert len(batch_2) == 1
assert queue.empty() is True