[v1&WIP] dataloader init (#9645)

This commit is contained in:
Kingsley
2025-12-23 16:29:47 +08:00
committed by GitHub
parent 7901b2f32e
commit 1c8a42d2f8
7 changed files with 981 additions and 18 deletions

View File

@@ -0,0 +1,173 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Integration tests for DataLoader with different combinations of packing and dynamic batching.
Tests the 4 scenarios:
a) non pack + non dynamic.
b) non pack + dynamic.
c) pack + non dynamic.
d) pack + dynamic.
"""
import torch
from torch.utils.data import DataLoader as TorchDataLoader
from torch.utils.data import Dataset
from transformers import AutoTokenizer
from llamafactory.v1.config.data_args import DataArguments
from llamafactory.v1.core.data_engine import DataEngine
from llamafactory.v1.core.data_loader import DataLoader
from llamafactory.v1.core.trainer_utils.data_collator import (
DefaultCollator,
)
from llamafactory.v1.plugins.data_plugins.template import QwenTemplate
from llamafactory.v1.utils.batching_queue import TextBatchingQueue
class TensorDataset(Dataset):
"""Wrapper dataset that converts DataEngine samples to tensor format."""
def __init__(self, data_engine: DataEngine, processor, template, max_samples: int = None):
self.data_engine = data_engine
self.processor = processor
self.template = template
self.max_samples = max_samples or len(data_engine)
self.tokenizer = processor.tokenizer if hasattr(processor, "tokenizer") else processor
def __len__(self):
return min(self.max_samples, len(self.data_engine))
def __getitem__(self, idx):
# Get sample from DataEngine
sample = self.data_engine[idx]
# Extract messages from sample
# DataEngine returns samples with format like {"messages": [...], ...}
# For llamafactory/v1-sft-demo, the format should have "messages" field
messages = None
if "messages" in sample:
messages = sample["messages"]
elif "conversations" in sample:
messages = sample["conversations"]
elif "conversation" in sample:
messages = sample["conversation"]
else:
# Try to find message-like fields (skip _dataset_name)
for key, value in sample.items():
if key.startswith("_"):
continue
if isinstance(value, list) and len(value) > 0:
# Check if it looks like a message list
if isinstance(value[0], dict) and "role" in value[0]:
messages = value
break
if messages is None:
raise ValueError(f"Could not find messages in sample: {list(sample.keys())}")
# Encode messages using template
encoded = self.template.encode_messages(self.tokenizer, messages)
# Convert to tensors
return {
"input_ids": torch.tensor(encoded["input_ids"], dtype=torch.long),
"attention_mask": torch.tensor(encoded["attention_mask"], dtype=torch.long),
"labels": torch.tensor(encoded["labels"], dtype=torch.long),
}
def create_real_dataset(max_samples: int = 20, batch_size: int = 4):
"""Create a real dataset using DataEngine."""
data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
data_engine = DataEngine(data_args)
# Create processor and template
processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen2.5")
template = QwenTemplate()
# Create tensor dataset
raw_data_dataset = TensorDataset(data_engine, processor, template, max_samples=max_samples)
# Create torch DataLoader
torch_dataloader = TorchDataLoader(
raw_data_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: x,
)
return torch_dataloader, processor, template
class TestDataLoaderNonPackNonDynamic:
"""Test case a) non pack + non dynamic."""
def test_basic_functionality(self):
"""Test DataLoader without packing and without dynamic batching."""
# Create real dataset
torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
# Create collator (non-packing)
collator = DefaultCollator(processor=processor, template=template)
# Create DataLoader without batching_queue (non-dynamic)
data_loader = DataLoader(
dataloader=torch_dataloader,
collate_fn=collator,
num_micro_batch=1,
batching_queue=None,
)
# Iterate and check results
batches = list(iter(data_loader))
assert len(batches) > 0
# Check first batch
one_batch = batches[0]
micro_batches = one_batch[0]
assert "input_ids" in micro_batches
assert "attention_mask" in micro_batches
assert "labels" in micro_batches
assert micro_batches["input_ids"].shape[0] == 1 # batch_size=1
assert micro_batches["input_ids"].ndim == 2 # [batch_size, seq_len]
class TestDataLoaderNonPackDynamic:
"""Test case b) non pack + dynamic."""
def test_basic_functionality(self):
"""Test DataLoader without packing but with dynamic batching."""
# Create real dataset
torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
collator = DefaultCollator(processor=processor, template=template)
# Create batching queue for dynamic batching
batching_queue = TextBatchingQueue(
token_micro_bsz=120,
buffer_size=8,
)
data_loader = DataLoader(
dataloader=torch_dataloader,
collate_fn=collator,
num_micro_batch=4,
batching_queue=batching_queue,
)
# Iterate and check
batches = list(iter(data_loader))
micro_batch_tokens_first = [micro_batch["attention_mask"].sum() for micro_batch in batches[0]]
assert all(num_tokens <= 120 for num_tokens in micro_batch_tokens_first)
assert len(batches) > 0

View File

@@ -0,0 +1,112 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from llamafactory.v1.utils.batching_queue import DynamicBatchSizeBuffer, TextBatchingQueue
def create_sample(length: int):
"""Helper to create a mock sample with a specific token length."""
return {"input_ids": torch.ones(length), "attention_mask": torch.ones(length)}
class TestDynamicBatchSizeBuffer:
def test_append_and_token_count(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(10))
buffer.append(create_sample(20))
assert len(buffer) == 2
assert buffer.total_token_count == 30
def test_get_samples_within_budget(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(10))
buffer.append(create_sample(10))
buffer.append(create_sample(50)) # This one is large
# Request 25 tokens. Should get the first two (20 tokens total)
samples = buffer.get_samples(max_tokens_per_iteration=25)
assert len(samples) == 2
def test_force_return_first_sample(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(100))
# Even though budget is 50, force=True (default) should return the 100-token sample
samples = buffer.get_samples(max_tokens_per_iteration=50, force=True)
assert len(samples) == 1
assert len(samples[0]["input_ids"]) == 100
def test_flush_removes_used_samples(self):
buffer = DynamicBatchSizeBuffer()
buffer.append(create_sample(10))
buffer.append(create_sample(20))
# Take the first sample
buffer.get_samples(max_tokens_per_iteration=15)
buffer.flush()
assert len(buffer) == 1
assert buffer.total_token_count == 20
# The remaining sample should now be at the start
remaining = buffer.get_samples(max_tokens_per_iteration=50)
assert len(remaining[0]["input_ids"]) == 20
class TestTextBatchingQueue:
def test_is_full_filled(self):
queue = TextBatchingQueue(token_micro_bsz=100, buffer_size=2)
queue.put_item(create_sample(10))
assert not queue.is_full_filled() # Only 1 sample, buffer_size=2
queue.put_item(create_sample(10))
assert not queue.is_full_filled() # 2 samples, but only 20 tokens (min 100)
queue.put_item(create_sample(90))
assert queue.is_full_filled() # Meets both conditions
def test_warmup_logic(self):
# token_micro_bsz=1000, starts at 200, reaches 1000 at step 10
queue = TextBatchingQueue(token_micro_bsz=1000, bsz_warmup_steps=10, bsz_warmup_init_mbtoken=200)
# Step 0: should be init value
assert queue.get_cur_token_micro_bsz() == 200
# Step 5: halfway through warmup (200 + (800 * 5/10)) = 600
queue._step = 5
assert queue.get_cur_token_micro_bsz() == 600
# Step 11: past warmup
queue._step = 11
assert queue.get_cur_token_micro_bsz() == 1000
def test_get_micro_batch_integration(self):
queue = TextBatchingQueue(token_micro_bsz=50, buffer_size=1)
queue.put_item(create_sample(20))
queue.put_item(create_sample(20))
queue.put_item(create_sample(20))
# At step 0 (warmup not triggered as bsz_warmup_steps is -1 default),
# it should take samples up to 50 tokens.
batch = queue.get_micro_batch(step=0)
assert len(batch) == 2
assert queue.empty() is False
batch_2 = queue.get_micro_batch(step=1)
assert len(batch_2) == 1
assert queue.empty() is True