[v1] support read dataset (#9243)

This commit is contained in:
Yaowei Zheng
2025-10-09 17:16:33 +08:00
committed by GitHub
parent 10146029ba
commit 1c35db60d6
9 changed files with 742 additions and 41 deletions

View File

@@ -13,7 +13,7 @@
# limitations under the License.
from ..config.training_args import TrainingArguments
from ..extras.types import DataLoader, Model, Processor
from ..extras.types import DataCollator, Model, Processor, TorchDataset
class BaseTrainer:
@@ -22,14 +22,19 @@ class BaseTrainer:
args: TrainingArguments,
model: Model,
processor: Processor,
data_loader: DataLoader,
dataset: TorchDataset,
data_collator: DataCollator,
) -> None:
self.args = args
self.model = model
self.processor = processor
self.data_loader = data_loader
self.dataset = dataset
self.data_collator = data_collator
self.optimizer = None
self.lr_scheduler = None
def create_dataloader(self) -> None:
pass
def fit(self) -> None:
pass

View File

@@ -13,63 +13,193 @@
# limitations under the License.
import os
from collections.abc import AsyncIterator, Iterator
from typing import Literal, Optional
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from torch.utils.data import Dataset
from ..config.data_args import DataArguments
from ..extras.types import DataLoader, Dataset, Processor
from ..extras.types import DatasetInfo, HFDataset, Processor
class DataCollator:
"""Default Data collator."""
def __init__(self, processor: Processor) -> None:
self.processor = processor
class DatasetPathMixin:
"""Path utilities."""
args: DataArguments
"""Data arguments."""
def _abspath(self, path: str) -> str:
return os.path.abspath(os.path.expanduser(os.path.join(self.args.dataset_dir, path)))
def _abspath(self, path: str, dataset_dir: Optional[str] = None) -> str:
"""Get absolute path of dataset.
def _exists(self, path: str) -> bool:
return os.path.exists(self._abspath(path))
def _isfile(self, path: str) -> bool:
return os.path.isfile(self._abspath(path))
class DataEngine(DatasetPathMixin):
def __init__(self, data_args: DataArguments) -> None:
self.args = data_args
self.datasets: dict[str, Dataset] = {}
dataset_info = self.get_dataset_info()
self.load_dataset(dataset_info)
def get_dataset_info(self) -> dict:
"""Get dataset info from dataset path.
Args:
path (str): Dataset path.
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
Returns:
dict: Dataset info.
str: Absolute path of dataset.
"""
dataset_dir = dataset_dir or self.args.dataset_dir
return os.path.abspath(os.path.expanduser(os.path.join(dataset_dir, path)))
def _exists(self, path: str, dataset_dir: Optional[str] = None) -> bool:
"""Check if dataset exists.
Args:
path (str): Dataset path.
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
Returns:
bool: Whether dataset exists.
"""
return os.path.exists(self._abspath(path, dataset_dir))
def _isfile(self, path: str, dataset_dir: Optional[str] = None) -> bool:
"""Check if dataset is a file.
Args:
path (str): Dataset path.
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
Returns:
bool: Whether dataset is a file.
"""
return os.path.isfile(self._abspath(path, dataset_dir))
def _isdir(self, path: str, dataset_dir: Optional[str] = None) -> bool:
"""Check if dataset is a directory.
Args:
path (str): Dataset path.
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
Returns:
bool: Whether dataset is a directory.
"""
return os.path.isdir(self._abspath(path, dataset_dir))
def _get_builder_name(self, path: str) -> Literal["arrow", "csv", "json", "parquet", "text"]:
"""Get dataset builder name.
Args:
path (str): Dataset path.
Returns:
Literal["arrow", "csv", "json", "parquet", "text"]: Dataset builder name.
"""
return os.path.splitext(path)[-1][1:].replace("jsonl", "json").replace("txt", "text")
class DataEngine(Dataset, DatasetPathMixin):
"""Data engine."""
def __init__(self, data_args: DataArguments) -> None:
self.args = data_args
"""Data arguments."""
self.datasets: dict[str, HFDataset] = {}
"""Dict of (dataset_name, dataset)"""
self.dataset_info: dict[str, DatasetInfo] = {}
"""Dict of (dataset_name, dataset_info)"""
self.streaming: bool = False
"""Whether dataset is streaming."""
self.data_index: list[tuple[str, int]] = []
"""List of (dataset_name, sample_index)"""
self.get_dataset_info()
self.load_dataset()
self.build_data_index()
def get_dataset_info(self) -> None:
"""Get dataset info."""
if self.args.dataset.endswith(".yaml") and self._isfile(self.args.dataset): # local file
return OmegaConf.load(self._abspath(self.args.dataset))
elif self.args.dataset.endswith(".yaml"): # hf hub uri
self.dataset_info = OmegaConf.load(self._abspath(self.args.dataset))
elif self.args.dataset.endswith(".yaml"): # hf hub uri, e.g. llamafactory/v1-sft-demo/dataset_info.yaml
repo_id, filename = os.path.split(self.args.dataset)
filepath = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset")
return OmegaConf.load(filepath)
self.dataset_info = OmegaConf.load(filepath)
elif self._exists(self.args.dataset): # local file(s)
return {"default": {"file_name": self.args.dataset}}
else: # hf hub dataset
return {"default": {"hf_hub_url": self.args.dataset}}
self.dataset_info = {"default": {"file_name": self.args.dataset}}
else: # hf hub dataset, e.g. llamafactory/v1-sft-demo
self.dataset_info = {"default": {"hf_hub_url": self.args.dataset}}
def load_dataset(self, dataset_info: dict) -> None:
for key, value in dataset_info.items():
def load_dataset(self) -> None:
"""Load dataset from dataset info."""
for key, value in self.dataset_info.items():
dataset_dir = value.get("dataset_dir", self.args.dataset_dir)
split = value.get("split", "train")
streaming = value.get("streaming", False)
self.streaming |= streaming
if "hf_hub_url" in value:
dataset_info[key] = load_dataset(value["hf_hub_url"])
self.datasets[key] = load_dataset(value["hf_hub_url"], split=split, streaming=streaming)
elif "file_name" in value:
dataset_info[key] = load_dataset(value["file_name"])
filepath = self._abspath(value["file_name"], dataset_dir)
if os.path.isdir(filepath):
filetype = self._get_builder_name(os.listdir(filepath)[0])
self.datasets[key] = load_dataset(filetype, data_dir=filepath, split=split)
elif os.path.isfile(filepath):
filetype = self._get_builder_name(filepath)
self.datasets[key] = load_dataset(filetype, data_files=filepath, split=split)
else:
raise ValueError(f"Can not load dataset {key} from {filepath}.")
def get_data_loader(self, processor: Processor) -> DataLoader:
pass
if streaming:
self.datasets[key] = self.datasets[key].to_iterable_dataset()
else:
# TODO: support dataset loader plugins
raise ValueError(f"Dataset {key} is not supported.")
def build_data_index(self) -> None:
"""Build dataset index."""
for dataset_name, dataset in self.datasets.items():
if self.streaming:
self.data_index.append((dataset_name, -1))
else:
# TODO: add sample_num, weight
self.data_index.extend([(dataset_name, sample_index) for sample_index in range(len(dataset))])
def __len__(self) -> int:
"""Get dataset length.
Returns:
int: Dataset length.
"""
if self.streaming:
return -1
else:
return len(self.data_index)
def __getitem__(self, index: int) -> dict:
"""Get dataset item.
Args:
index (int): Dataset index.
Returns:
dict: Dataset item.
"""
dataset_name, sample_index = self.data_index[index]
return self.datasets[dataset_name][sample_index]
def __iter__(self) -> Iterator:
"""Get dataset iterator.
Returns:
Iterator: Dataset iterator.
"""
raise NotImplementedError()
def __aiter__(self) -> AsyncIterator:
"""Get dataset async iterator.
Returns:
AsyncIterator: Dataset async iterator.
"""
raise NotImplementedError()