mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 11:20:35 +08:00
add tests
This commit is contained in:
@@ -18,7 +18,9 @@ from typing import Sequence
|
||||
import torch
|
||||
from peft import LoraModel, PeftModel
|
||||
from transformers import AutoModelForCausalLM
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from llamafactory.extras.misc import get_current_device
|
||||
from llamafactory.hparams import get_infer_args, get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
@@ -27,6 +29,8 @@ TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||
|
||||
TINY_LLAMA_ADAPTER = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora")
|
||||
|
||||
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead")
|
||||
|
||||
TRAIN_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
@@ -67,10 +71,29 @@ def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_k
|
||||
assert torch.allclose(state_dict_a[name], state_dict_b[name]) is True
|
||||
|
||||
|
||||
def test_lora_train_qv_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "q_proj,v_proj", **TRAIN_ARGS})
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
linear_modules = set()
|
||||
for name, param in model.named_parameters():
|
||||
if any(module in name for module in ["lora_A", "lora_B"]):
|
||||
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1])
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
assert linear_modules == {"q_proj", "v_proj"}
|
||||
|
||||
|
||||
def test_lora_train_all_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "all", **TRAIN_ARGS})
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
linear_modules = set()
|
||||
for name, param in model.named_parameters():
|
||||
if any(module in name for module in ["lora_A", "lora_B"]):
|
||||
@@ -90,6 +113,7 @@ def test_lora_train_extra_modules():
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
extra_modules = set()
|
||||
for name, param in model.named_parameters():
|
||||
if any(module in name for module in ["lora_A", "lora_B"]):
|
||||
@@ -113,7 +137,9 @@ def test_lora_train_old_adapters():
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA, torch_dtype=model.dtype, device_map=model.device)
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER, is_trainable=True)
|
||||
for param in filter(lambda p: p.requires_grad, ref_model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
@@ -128,7 +154,9 @@ def test_lora_train_new_adapters():
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA, torch_dtype=model.dtype, device_map=model.device)
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER, is_trainable=True)
|
||||
for param in filter(lambda p: p.requires_grad, ref_model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
@@ -138,17 +166,31 @@ def test_lora_train_new_adapters():
|
||||
)
|
||||
|
||||
|
||||
def test_lora_train_valuehead():
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(
|
||||
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True, add_valuehead=True
|
||||
)
|
||||
|
||||
ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(
|
||||
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
ref_state_dict = ref_model.state_dict()
|
||||
|
||||
assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"])
|
||||
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"])
|
||||
|
||||
|
||||
def test_lora_inference():
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA, torch_dtype=model.dtype, device_map=model.device)
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER)
|
||||
ref_model = ref_model.merge_and_unload()
|
||||
compare_model(model, ref_model)
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
assert "lora" not in name
|
||||
|
||||
Reference in New Issue
Block a user