support ORPO

This commit is contained in:
hiyouga
2024-03-31 18:29:50 +08:00
parent 27776c3474
commit 17bf8a2c3a
22 changed files with 395 additions and 47 deletions

View File

@@ -1,6 +1,15 @@
from .collator import PairwiseDataCollatorWithPadding
from .loader import get_dataset
from .template import Template, get_template_and_fix_tokenizer, templates
from .utils import Role, split_dataset
__all__ = ["get_dataset", "Template", "get_template_and_fix_tokenizer", "templates", "Role", "split_dataset"]
__all__ = [
"PairwiseDataCollatorWithPadding",
"get_dataset",
"Template",
"get_template_and_fix_tokenizer",
"templates",
"Role",
"split_dataset",
]

View File

@@ -0,0 +1,51 @@
from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple
import torch
from transformers import DataCollatorForSeq2Seq
@dataclass
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
r"""
Data collator for pairwise data.
"""
def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
r"""
Masks out the input ids except for the responses.
"""
padded_labels = []
for feature, (prompt_len, answer_len) in zip(batch, positions):
if self.tokenizer.padding_side == "left":
start, end = feature.size(0) - answer_len, feature.size(0)
else:
start, end = prompt_len, prompt_len + answer_len
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
padded_tensor[start:end] = feature[start:end]
padded_labels.append(padded_tensor)
return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
r"""
Pads batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
the last n examples represent rejected examples.
"""
concatenated_features = []
label_positions = []
for key in ("chosen_ids", "rejected_ids"):
for feature in features:
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
concatenated_features.append(
{
"input_ids": feature["prompt_ids"] + feature[key],
"attention_mask": [1] * (prompt_len + answer_len),
}
)
label_positions.append((prompt_len, answer_len))
batch = super().__call__(concatenated_features)
batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
return batch

View File

@@ -117,7 +117,6 @@ def get_dataset(
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
# split: Optional[str] = "train", # TODO: add split
) -> Union["Dataset", "IterableDataset"]:
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
if data_args.train_on_prompt and template.efficient_eos:
@@ -138,6 +137,9 @@ def get_dataset(
with training_args.main_process_first(desc="load dataset"):
all_datasets = []
for dataset_attr in get_dataset_list(data_args):
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
raise ValueError("The dataset is not applicable in the current training stage.")
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
dataset = merge_dataset(all_datasets, data_args, training_args)

View File

@@ -23,23 +23,25 @@ def preprocess_pretrain_dataset(
) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
if not data_args.packing:
return tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
if data_args.template == "gemma":
for i in range(len(result["input_ids"])):
result["input_ids"][i][0] = tokenizer.bos_token_id
if not data_args.packing:
if data_args.template == "gemma":
text_examples = [tokenizer.bos_token + example for example in text_examples]
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
else:
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
if data_args.template == "gemma":
for i in range(len(result["input_ids"])):
result["input_ids"][i][0] = tokenizer.bos_token_id
return result

View File

@@ -44,7 +44,7 @@ def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
max_target_len = int(max_len * (target_len / (source_len + target_len)))
max_target_len = max(max_target_len, reserved_label_len)
max_source_len = max_len - max_target_len
max_source_len = max_len - min(max_target_len, target_len)
return max_source_len, max_target_len