mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 15:52:49 +08:00
[data] fix loader (#7207)
* fix dataloader * add test case * fix type * fix ci * fix ci * fix ci * disable overwrite cache in ci Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
parent
82a2bac866
commit
16419b2834
@ -43,7 +43,7 @@ class Role(str, Enum):
|
|||||||
|
|
||||||
class DatasetModule(TypedDict):
|
class DatasetModule(TypedDict):
|
||||||
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||||
eval_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]]
|
||||||
|
|
||||||
|
|
||||||
def merge_dataset(
|
def merge_dataset(
|
||||||
@ -54,11 +54,13 @@ def merge_dataset(
|
|||||||
"""
|
"""
|
||||||
if len(all_datasets) == 1:
|
if len(all_datasets) == 1:
|
||||||
return all_datasets[0]
|
return all_datasets[0]
|
||||||
|
|
||||||
elif data_args.mix_strategy == "concat":
|
elif data_args.mix_strategy == "concat":
|
||||||
if data_args.streaming:
|
if data_args.streaming:
|
||||||
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
|
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
|
||||||
|
|
||||||
return concatenate_datasets(all_datasets)
|
return concatenate_datasets(all_datasets)
|
||||||
|
|
||||||
elif data_args.mix_strategy.startswith("interleave"):
|
elif data_args.mix_strategy.startswith("interleave"):
|
||||||
if not data_args.streaming:
|
if not data_args.streaming:
|
||||||
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||||
@ -69,24 +71,75 @@ def merge_dataset(
|
|||||||
seed=seed,
|
seed=seed,
|
||||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||||
)
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
|
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
|
||||||
|
|
||||||
|
|
||||||
def split_dataset(
|
def split_dataset(
|
||||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
|
dataset: Optional[Union["Dataset", "IterableDataset"]],
|
||||||
|
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]],
|
||||||
|
data_args: "DataArguments",
|
||||||
|
seed: int,
|
||||||
) -> "DatasetDict":
|
) -> "DatasetDict":
|
||||||
r"""
|
r"""
|
||||||
Splits the dataset and returns a dataset dict containing train set and validation set.
|
Splits the dataset and returns a dataset dict containing train set and validation set.
|
||||||
|
|
||||||
Supports both map dataset and iterable dataset.
|
Supports both map dataset and iterable dataset.
|
||||||
"""
|
"""
|
||||||
if data_args.streaming:
|
if eval_dataset is not None and data_args.val_size > 1e-6:
|
||||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
|
||||||
val_set = dataset.take(int(data_args.val_size))
|
|
||||||
train_set = dataset.skip(int(data_args.val_size))
|
dataset_dict = {}
|
||||||
return DatasetDict({"train": train_set, "validation": val_set})
|
if dataset is not None:
|
||||||
else:
|
if data_args.streaming:
|
||||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
|
||||||
return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})
|
if data_args.val_size > 1e-6:
|
||||||
|
if data_args.streaming:
|
||||||
|
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
|
||||||
|
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
|
||||||
|
else:
|
||||||
|
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||||
|
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||||
|
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||||
|
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
|
||||||
|
else:
|
||||||
|
dataset_dict["train"] = dataset
|
||||||
|
|
||||||
|
if eval_dataset is not None:
|
||||||
|
if isinstance(eval_dataset, dict):
|
||||||
|
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
||||||
|
else:
|
||||||
|
if data_args.streaming:
|
||||||
|
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||||
|
|
||||||
|
dataset_dict["validation"] = eval_dataset
|
||||||
|
|
||||||
|
return DatasetDict(dataset_dict)
|
||||||
|
|
||||||
|
|
||||||
|
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
|
||||||
|
r"""
|
||||||
|
Converts dataset or dataset dict to dataset module.
|
||||||
|
"""
|
||||||
|
dataset_module: "DatasetModule" = {}
|
||||||
|
if isinstance(dataset, DatasetDict): # dataset dict
|
||||||
|
if "train" in dataset:
|
||||||
|
dataset_module["train_dataset"] = dataset["train"]
|
||||||
|
|
||||||
|
if "validation" in dataset:
|
||||||
|
dataset_module["eval_dataset"] = dataset["validation"]
|
||||||
|
else:
|
||||||
|
eval_dataset = {}
|
||||||
|
for key in dataset.keys():
|
||||||
|
if key.startswith("validation_"):
|
||||||
|
eval_dataset[key[len("validation_") :]] = dataset[key]
|
||||||
|
|
||||||
|
if len(eval_dataset):
|
||||||
|
dataset_module["eval_dataset"] = eval_dataset
|
||||||
|
|
||||||
|
else: # single dataset
|
||||||
|
dataset_module["train_dataset"] = dataset
|
||||||
|
|
||||||
|
return dataset_module
|
||||||
|
@ -17,13 +17,13 @@ import sys
|
|||||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union
|
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from datasets import DatasetDict, load_dataset, load_from_disk
|
from datasets import load_dataset, load_from_disk
|
||||||
|
|
||||||
from ..extras import logging
|
from ..extras import logging
|
||||||
from ..extras.constants import FILEEXT2TYPE
|
from ..extras.constants import FILEEXT2TYPE
|
||||||
from ..extras.misc import check_version, has_tokenized_data
|
from ..extras.misc import check_version, has_tokenized_data
|
||||||
from .converter import align_dataset
|
from .converter import align_dataset
|
||||||
from .data_utils import merge_dataset, split_dataset
|
from .data_utils import get_dataset_module, merge_dataset, split_dataset
|
||||||
from .parser import get_dataset_list
|
from .parser import get_dataset_list
|
||||||
from .processor import (
|
from .processor import (
|
||||||
FeedbackDatasetProcessor,
|
FeedbackDatasetProcessor,
|
||||||
@ -292,23 +292,12 @@ def get_dataset(
|
|||||||
if data_args.tokenized_path is not None:
|
if data_args.tokenized_path is not None:
|
||||||
if has_tokenized_data(data_args.tokenized_path):
|
if has_tokenized_data(data_args.tokenized_path):
|
||||||
logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
|
logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
|
||||||
tokenized_data: Union["Dataset", "DatasetDict"] = load_from_disk(data_args.tokenized_path)
|
tokenized_data = load_from_disk(data_args.tokenized_path)
|
||||||
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
|
dataset_module = get_dataset_module(tokenized_data)
|
||||||
|
|
||||||
dataset_module: Dict[str, "Dataset"] = {}
|
|
||||||
if isinstance(tokenized_data, DatasetDict):
|
|
||||||
if "train" in tokenized_data:
|
|
||||||
dataset_module["train_dataset"] = tokenized_data["train"]
|
|
||||||
|
|
||||||
if "validation" in tokenized_data:
|
|
||||||
dataset_module["eval_dataset"] = tokenized_data["validation"]
|
|
||||||
|
|
||||||
else: # single dataset
|
|
||||||
dataset_module["train_dataset"] = tokenized_data
|
|
||||||
|
|
||||||
if data_args.streaming:
|
if data_args.streaming:
|
||||||
dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()}
|
dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()
|
||||||
|
|
||||||
|
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
|
||||||
return dataset_module
|
return dataset_module
|
||||||
|
|
||||||
if data_args.streaming:
|
if data_args.streaming:
|
||||||
@ -335,27 +324,7 @@ def get_dataset(
|
|||||||
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
|
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
|
||||||
)
|
)
|
||||||
|
|
||||||
if data_args.val_size > 1e-6:
|
dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
|
||||||
dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed)
|
|
||||||
else:
|
|
||||||
dataset_dict = {}
|
|
||||||
if dataset is not None:
|
|
||||||
if data_args.streaming:
|
|
||||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
||||||
|
|
||||||
dataset_dict["train"] = dataset
|
|
||||||
|
|
||||||
if eval_dataset is not None:
|
|
||||||
if isinstance(eval_dataset, dict):
|
|
||||||
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
|
||||||
else:
|
|
||||||
if data_args.streaming:
|
|
||||||
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
||||||
|
|
||||||
dataset_dict["validation"] = eval_dataset
|
|
||||||
|
|
||||||
dataset_dict = DatasetDict(dataset_dict)
|
|
||||||
|
|
||||||
if data_args.tokenized_path is not None: # save tokenized dataset to disk and exit
|
if data_args.tokenized_path is not None: # save tokenized dataset to disk and exit
|
||||||
if training_args.should_save:
|
if training_args.should_save:
|
||||||
dataset_dict.save_to_disk(data_args.tokenized_path)
|
dataset_dict.save_to_disk(data_args.tokenized_path)
|
||||||
@ -364,19 +333,4 @@ def get_dataset(
|
|||||||
|
|
||||||
sys.exit(0)
|
sys.exit(0)
|
||||||
|
|
||||||
dataset_module = {}
|
return get_dataset_module(dataset_dict)
|
||||||
if "train" in dataset_dict:
|
|
||||||
dataset_module["train_dataset"] = dataset_dict["train"]
|
|
||||||
|
|
||||||
if "validation" in dataset_dict:
|
|
||||||
dataset_module["eval_dataset"] = dataset_dict["validation"]
|
|
||||||
else:
|
|
||||||
eval_dataset = {}
|
|
||||||
for key in dataset_dict.keys():
|
|
||||||
if key.startswith("validation_"):
|
|
||||||
eval_dataset[key[len("validation_") :]] = dataset_dict[key]
|
|
||||||
|
|
||||||
if len(eval_dataset):
|
|
||||||
dataset_module["eval_dataset"] = eval_dataset
|
|
||||||
|
|
||||||
return dataset_module
|
|
||||||
|
@ -26,10 +26,11 @@ from ..model import load_model, load_tokenizer
|
|||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from datasets import Dataset
|
|
||||||
from peft import LoraModel
|
from peft import LoraModel
|
||||||
from transformers import PreTrainedModel
|
from transformers import PreTrainedModel
|
||||||
|
|
||||||
|
from ..data.data_utils import DatasetModule
|
||||||
|
|
||||||
|
|
||||||
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None:
|
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None:
|
||||||
state_dict_a = model_a.state_dict()
|
state_dict_a = model_a.state_dict()
|
||||||
@ -101,12 +102,12 @@ def load_reference_model(
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def load_train_dataset(**kwargs) -> "Dataset":
|
def load_dataset_module(**kwargs) -> "DatasetModule":
|
||||||
model_args, data_args, training_args, _, _ = get_train_args(kwargs)
|
model_args, data_args, training_args, _, _ = get_train_args(kwargs)
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
|
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
|
||||||
dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module)
|
dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module)
|
||||||
return dataset_module["train_dataset"]
|
return dataset_module
|
||||||
|
|
||||||
|
|
||||||
def patch_valuehead_model() -> None:
|
def patch_valuehead_model() -> None:
|
||||||
|
@ -20,7 +20,7 @@ from datasets import load_dataset
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
from llamafactory.train.test_utils import load_train_dataset
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||||
@ -36,7 +36,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 8192,
|
"cutoff_len": 8192,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
@ -45,7 +44,7 @@ TRAIN_ARGS = {
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [16])
|
@pytest.mark.parametrize("num_samples", [16])
|
||||||
def test_feedback_data(num_samples: int):
|
def test_feedback_data(num_samples: int):
|
||||||
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
|
original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
|
@ -21,7 +21,7 @@ from datasets import load_dataset
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
from llamafactory.train.test_utils import load_train_dataset
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||||
@ -37,7 +37,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 8192,
|
"cutoff_len": 8192,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
@ -55,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [16])
|
@pytest.mark.parametrize("num_samples", [16])
|
||||||
def test_pairwise_data(num_samples: int):
|
def test_pairwise_data(num_samples: int):
|
||||||
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
|
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
|
@ -20,7 +20,7 @@ from datasets import load_dataset
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
from llamafactory.train.test_utils import load_train_dataset
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||||
@ -36,7 +36,6 @@ TRAIN_ARGS = {
|
|||||||
"finetuning_type": "full",
|
"finetuning_type": "full",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 8192,
|
"cutoff_len": 8192,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
@ -45,7 +44,7 @@ TRAIN_ARGS = {
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [16])
|
@pytest.mark.parametrize("num_samples", [16])
|
||||||
def test_supervised_single_turn(num_samples: int):
|
def test_supervised_single_turn(num_samples: int):
|
||||||
train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)
|
train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(TINY_DATA, split="train")
|
original_data = load_dataset(TINY_DATA, split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
@ -64,7 +63,9 @@ def test_supervised_single_turn(num_samples: int):
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [8])
|
@pytest.mark.parametrize("num_samples", [8])
|
||||||
def test_supervised_multi_turn(num_samples: int):
|
def test_supervised_multi_turn(num_samples: int):
|
||||||
train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)
|
train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
|
||||||
|
"train_dataset"
|
||||||
|
]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
@ -75,9 +76,9 @@ def test_supervised_multi_turn(num_samples: int):
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [4])
|
@pytest.mark.parametrize("num_samples", [4])
|
||||||
def test_supervised_train_on_prompt(num_samples: int):
|
def test_supervised_train_on_prompt(num_samples: int):
|
||||||
train_dataset = load_train_dataset(
|
train_dataset = load_dataset_module(
|
||||||
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
|
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
|
||||||
)
|
)["train_dataset"]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
@ -89,9 +90,9 @@ def test_supervised_train_on_prompt(num_samples: int):
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [4])
|
@pytest.mark.parametrize("num_samples", [4])
|
||||||
def test_supervised_mask_history(num_samples: int):
|
def test_supervised_mask_history(num_samples: int):
|
||||||
train_dataset = load_train_dataset(
|
train_dataset = load_dataset_module(
|
||||||
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
|
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
|
||||||
)
|
)["train_dataset"]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
|
@ -19,7 +19,7 @@ import pytest
|
|||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.train.test_utils import load_train_dataset
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||||
@ -39,7 +39,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 8192,
|
"cutoff_len": 8192,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
@ -48,7 +47,7 @@ TRAIN_ARGS = {
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_samples", [16])
|
@pytest.mark.parametrize("num_samples", [16])
|
||||||
def test_unsupervised_data(num_samples: int):
|
def test_unsupervised_data(num_samples: int):
|
||||||
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
|
@ -1,3 +1,17 @@
|
|||||||
|
# Copyright 2025 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
from llamafactory.data import Role
|
from llamafactory.data import Role
|
||||||
from llamafactory.data.converter import get_dataset_converter
|
from llamafactory.data.converter import get_dataset_converter
|
||||||
from llamafactory.data.parser import DatasetAttr
|
from llamafactory.data.parser import DatasetAttr
|
||||||
|
56
tests/data/test_loader.py
Normal file
56
tests/data/test_loader.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
# Copyright 2025 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
|
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||||
|
|
||||||
|
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||||
|
|
||||||
|
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
|
||||||
|
|
||||||
|
TRAIN_ARGS = {
|
||||||
|
"model_name_or_path": TINY_LLAMA,
|
||||||
|
"stage": "sft",
|
||||||
|
"do_train": True,
|
||||||
|
"finetuning_type": "full",
|
||||||
|
"template": "llama3",
|
||||||
|
"dataset": TINY_DATA,
|
||||||
|
"dataset_dir": "ONLINE",
|
||||||
|
"cutoff_len": 8192,
|
||||||
|
"output_dir": "dummy_dir",
|
||||||
|
"overwrite_output_dir": True,
|
||||||
|
"fp16": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def test_load_train_only():
|
||||||
|
dataset_module = load_dataset_module(**TRAIN_ARGS)
|
||||||
|
assert dataset_module.get("train_dataset") is not None
|
||||||
|
assert dataset_module.get("eval_dataset") is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_load_val_size():
|
||||||
|
dataset_module = load_dataset_module(val_size=0.1, **TRAIN_ARGS)
|
||||||
|
assert dataset_module.get("train_dataset") is not None
|
||||||
|
assert dataset_module.get("eval_dataset") is not None
|
||||||
|
|
||||||
|
|
||||||
|
def test_load_eval_data():
|
||||||
|
dataset_module = load_dataset_module(eval_dataset=TINY_DATA, **TRAIN_ARGS)
|
||||||
|
assert dataset_module.get("train_dataset") is not None
|
||||||
|
assert dataset_module.get("eval_dataset") is not None
|
@ -32,7 +32,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1,
|
"cutoff_len": 1,
|
||||||
"overwrite_cache": False,
|
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"per_device_train_batch_size": 1,
|
"per_device_train_batch_size": 1,
|
||||||
"max_steps": 1,
|
"max_steps": 1,
|
||||||
|
@ -33,7 +33,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "ONLINE",
|
"dataset_dir": "ONLINE",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1024,
|
"cutoff_len": 1024,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
|
@ -30,7 +30,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "ONLINE",
|
"dataset_dir": "ONLINE",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1024,
|
"cutoff_len": 1024,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
|
@ -30,7 +30,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "ONLINE",
|
"dataset_dir": "ONLINE",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1024,
|
"cutoff_len": 1024,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
|
@ -42,7 +42,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "ONLINE",
|
"dataset_dir": "ONLINE",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1024,
|
"cutoff_len": 1024,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
|
@ -34,7 +34,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "ONLINE",
|
"dataset_dir": "ONLINE",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1024,
|
"cutoff_len": 1024,
|
||||||
"overwrite_cache": True,
|
|
||||||
"output_dir": "dummy_dir",
|
"output_dir": "dummy_dir",
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"fp16": True,
|
"fp16": True,
|
||||||
|
@ -38,7 +38,6 @@ TRAIN_ARGS = {
|
|||||||
"dataset_dir": "ONLINE",
|
"dataset_dir": "ONLINE",
|
||||||
"template": "llama3",
|
"template": "llama3",
|
||||||
"cutoff_len": 1024,
|
"cutoff_len": 1024,
|
||||||
"overwrite_cache": False,
|
|
||||||
"overwrite_output_dir": True,
|
"overwrite_output_dir": True,
|
||||||
"per_device_train_batch_size": 1,
|
"per_device_train_batch_size": 1,
|
||||||
"max_steps": 1,
|
"max_steps": 1,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user