mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 09:52:14 +08:00 
			
		
		
		
	[feat] support megatron-LM training by mcore_adapter (#9237)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
		
							parent
							
								
									129e918106
								
							
						
					
					
						commit
						13170577b2
					
				
							
								
								
									
										77
									
								
								docker/docker-cuda/Dockerfile.megatron
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										77
									
								
								docker/docker-cuda/Dockerfile.megatron
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,77 @@
 | 
				
			|||||||
 | 
					# NVIDIA official image (ubuntu-22.04 + cuda-12.4 + python-3.10)
 | 
				
			||||||
 | 
					# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-08.html
 | 
				
			||||||
 | 
					FROM nvcr.io/nvidia/pytorch:24.05-py3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ENV DEBIAN_FRONTEND=noninteractive
 | 
				
			||||||
 | 
					ENV PIP_ROOT_USER_ACTION=ignore
 | 
				
			||||||
 | 
					ENV PYPI_MIRROR=https://mirrors.aliyun.com/pypi/simple/
 | 
				
			||||||
 | 
					ENV PYPI_TRUSTED_HOST=mirrors.aliyun.com
 | 
				
			||||||
 | 
					ENV APT_MIRROR=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip install --upgrade pip setuptools wheel --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip uninstall -y torch torchvision torch-tensorrt \
 | 
				
			||||||
 | 
					    flash_attn transformer-engine \
 | 
				
			||||||
 | 
					    cudf dask-cuda cugraph cugraph-service-server cuml raft-dask cugraph-dgl cugraph-pyg dask-cudf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip uninstall -y opencv opencv-python opencv-python-headless && \
 | 
				
			||||||
 | 
					    rm -rf /usr/local/lib/python3.10/dist-packages/cv2/ && \
 | 
				
			||||||
 | 
					    pip install opencv-python-headless==4.11.0.86 --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip install "numpy==1.26.4" "optree>=0.13.0" "spacy==3.7.5" "weasel==0.4.1" \
 | 
				
			||||||
 | 
					    transformer-engine[pytorch]==2.2.0 megatron-core==0.13.0 deepspeed==0.16.4 \
 | 
				
			||||||
 | 
					    --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# RUN pip install vllm==0.8.4 \
 | 
				
			||||||
 | 
					#     --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					WORKDIR /build
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ARG apex_url=git+https://github.com/NVIDIA/apex.git@25.04
 | 
				
			||||||
 | 
					RUN pip uninstall -y apex && \
 | 
				
			||||||
 | 
					    MAX_JOBS=32 NINJA_FLAGS="-j32" NVCC_APPEND_FLAGS="--threads 32" \
 | 
				
			||||||
 | 
					    pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
 | 
				
			||||||
 | 
					    --config-settings "--build-option=--cpp_ext --cuda_ext --parallel 32" ${apex_url}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN rm -rf /build
 | 
				
			||||||
 | 
					WORKDIR /workspace
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN cp /etc/apt/sources.list /etc/apt/sources.list.bak && \
 | 
				
			||||||
 | 
					    { \
 | 
				
			||||||
 | 
					    echo "deb ${APT_MIRROR} jammy main restricted universe multiverse"; \
 | 
				
			||||||
 | 
					    echo "deb ${APT_MIRROR} jammy-security main restricted universe multiverse"; \
 | 
				
			||||||
 | 
					    echo "deb ${APT_MIRROR} jammy-updates main restricted universe multiverse"; \
 | 
				
			||||||
 | 
					    echo "deb ${APT_MIRROR} jammy-backports main restricted universe multiverse"; \
 | 
				
			||||||
 | 
					    } > /etc/apt/sources.list
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN apt-get update && apt-get install -y zip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN apt-get install -y openjdk-21-jdk
 | 
				
			||||||
 | 
					ENV JAVA_HOME /usr/lib/jvm/java-21-openjdk-amd64
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# pip install LLaMA-Factory
 | 
				
			||||||
 | 
					WORKDIR /app
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					COPY requirements.txt /app/
 | 
				
			||||||
 | 
					RUN pip install --no-cache-dir -r requirements.txt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RUN pip install "git+https://github.com/alibaba/roll.git#subdirectory=mcore_adapter"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					COPY . /app/
 | 
				
			||||||
 | 
					RUN pip install -e ".[metrics]" --no-build-isolation
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Expose port 7860 for LLaMA Board
 | 
				
			||||||
 | 
					ENV GRADIO_SERVER_PORT=7860
 | 
				
			||||||
 | 
					EXPOSE 7860
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Expose port 8000 for API service
 | 
				
			||||||
 | 
					ENV API_PORT=8000
 | 
				
			||||||
 | 
					EXPOSE 8000
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# unset proxy
 | 
				
			||||||
 | 
					ENV http_proxy=
 | 
				
			||||||
 | 
					ENV https_proxy=
 | 
				
			||||||
							
								
								
									
										29
									
								
								examples/megatron/qwen2_vl_full.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										29
									
								
								examples/megatron/qwen2_vl_full.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,29 @@
 | 
				
			|||||||
 | 
					model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
 | 
				
			||||||
 | 
					image_max_pixels: 262144
 | 
				
			||||||
 | 
					video_max_pixels: 16384
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					do_train: true
 | 
				
			||||||
 | 
					stage: sft
 | 
				
			||||||
 | 
					finetuning_type: full # only support full for now
 | 
				
			||||||
 | 
					dataset: llava_1k_en
 | 
				
			||||||
 | 
					preprocessing_num_workers: 8
 | 
				
			||||||
 | 
					cutoff_len: 4096
 | 
				
			||||||
 | 
					template: qwen2_vl
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					output_dir: saves/mca/qwen2_vl_full
 | 
				
			||||||
 | 
					per_device_train_batch_size: 1
 | 
				
			||||||
 | 
					gradient_accumulation_steps: 2
 | 
				
			||||||
 | 
					num_train_epochs: 2
 | 
				
			||||||
 | 
					learning_rate: 2e-5
 | 
				
			||||||
 | 
					logging_steps: 1
 | 
				
			||||||
 | 
					save_steps: 100
 | 
				
			||||||
 | 
					lr_scheduler_type: cosine
 | 
				
			||||||
 | 
					bf16: true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# mcore speed up
 | 
				
			||||||
 | 
					tensor_model_parallel_size: 4
 | 
				
			||||||
 | 
					sequence_parallel: true
 | 
				
			||||||
 | 
					pipeline_model_parallel_size: 2
 | 
				
			||||||
 | 
					bias_activation_fusion: true
 | 
				
			||||||
 | 
					apply_rope_fusion: true
 | 
				
			||||||
 | 
					use_distributed_optimizer: true
 | 
				
			||||||
							
								
								
									
										35
									
								
								examples/megatron/qwen3_moe_full.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								examples/megatron/qwen3_moe_full.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,35 @@
 | 
				
			|||||||
 | 
					model_name_or_path: Qwen/Qwen3-30B-A3B-Instruct-2507
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# GPU memory: 8 * 78GB
 | 
				
			||||||
 | 
					do_train: true
 | 
				
			||||||
 | 
					stage: sft
 | 
				
			||||||
 | 
					finetuning_type: full # only support full for now
 | 
				
			||||||
 | 
					dataset: alpaca_en_demo
 | 
				
			||||||
 | 
					preprocessing_num_workers: 8
 | 
				
			||||||
 | 
					cutoff_len: 4096
 | 
				
			||||||
 | 
					template: qwen3_nothink
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# global batchsize = (8 // 2 // 4) * 8 = 8
 | 
				
			||||||
 | 
					output_dir: saves/mca/qwen3_moe_full
 | 
				
			||||||
 | 
					per_device_train_batch_size: 1
 | 
				
			||||||
 | 
					gradient_accumulation_steps: 8
 | 
				
			||||||
 | 
					num_train_epochs: 2
 | 
				
			||||||
 | 
					learning_rate: 3e-6
 | 
				
			||||||
 | 
					logging_steps: 1
 | 
				
			||||||
 | 
					save_steps: 100
 | 
				
			||||||
 | 
					lr_scheduler_type: constant
 | 
				
			||||||
 | 
					bf16: true
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# mcore speed up
 | 
				
			||||||
 | 
					tensor_model_parallel_size: 1
 | 
				
			||||||
 | 
					sequence_parallel: false
 | 
				
			||||||
 | 
					pipeline_model_parallel_size: 4
 | 
				
			||||||
 | 
					bias_activation_fusion: true
 | 
				
			||||||
 | 
					apply_rope_fusion: true
 | 
				
			||||||
 | 
					use_distributed_optimizer: true
 | 
				
			||||||
 | 
					overlap_param_gather: true
 | 
				
			||||||
 | 
					overlap_grad_reduce: true
 | 
				
			||||||
 | 
					moe_grouped_gemm: true
 | 
				
			||||||
 | 
					moe_token_dispatcher_type: alltoall
 | 
				
			||||||
 | 
					expert_model_parallel_size: 2
 | 
				
			||||||
 | 
					recompute_granularity: full
 | 
				
			||||||
							
								
								
									
										125
									
								
								scripts/megatron_merge.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								scripts/megatron_merge.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,125 @@
 | 
				
			|||||||
 | 
					# Copyright 2025 the ROLL team and the LlamaFactory team.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# This code is modified from the ROLL library.
 | 
				
			||||||
 | 
					# https://github.com/alibaba/ROLL/blob/main/mcore_adapter/tools/convert.py
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					from typing import Optional
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import fire
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from mcore_adapter.models.converter.post_converter import convert_checkpoint_to_hf, convert_checkpoint_to_mca
 | 
				
			||||||
 | 
					from mcore_adapter.training_args import DistributingParallelArguments
 | 
				
			||||||
 | 
					from mcore_adapter.utils import get_logger
 | 
				
			||||||
 | 
					from transformers import AutoConfig
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					logger = get_logger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def convert_mca_to_hf(
 | 
				
			||||||
 | 
					    checkpoint_path: str,
 | 
				
			||||||
 | 
					    output_path: str = "./output",
 | 
				
			||||||
 | 
					    bf16: bool = False,
 | 
				
			||||||
 | 
					    fp16: bool = False,
 | 
				
			||||||
 | 
					    convert_model_max_length: Optional[int] = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    """Convert megatron checkpoint to HuggingFace format.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        checkpoint_path: Path to the checkpoint to convert
 | 
				
			||||||
 | 
					        output_path: Path to save the converted checkpoint
 | 
				
			||||||
 | 
					        bf16: Use bfloat16 precision
 | 
				
			||||||
 | 
					        fp16: Use float16 precision
 | 
				
			||||||
 | 
					        convert_model_max_length: Change the model_max_length in hf config.json
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if bf16 and fp16:
 | 
				
			||||||
 | 
					        raise ValueError("bf16 and fp16 cannot be both True.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    torch_dtype = None
 | 
				
			||||||
 | 
					    if bf16:
 | 
				
			||||||
 | 
					        torch_dtype = torch.bfloat16
 | 
				
			||||||
 | 
					    elif fp16:
 | 
				
			||||||
 | 
					        torch_dtype = torch.float16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    convert_checkpoint_to_hf(checkpoint_path, output_path, torch_dtype=torch_dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if convert_model_max_length is not None:
 | 
				
			||||||
 | 
					        config = AutoConfig.from_pretrained(output_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        config.model_max_length = convert_model_max_length
 | 
				
			||||||
 | 
					        config.save_pretrained(output_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def convert(
 | 
				
			||||||
 | 
					    checkpoint_path: str,
 | 
				
			||||||
 | 
					    output_path: str = "./output",
 | 
				
			||||||
 | 
					    bf16: bool = False,
 | 
				
			||||||
 | 
					    fp16: bool = False,
 | 
				
			||||||
 | 
					    convert_model_max_length: Optional[int] = None,
 | 
				
			||||||
 | 
					    tensor_model_parallel_size: int = 1,
 | 
				
			||||||
 | 
					    pipeline_model_parallel_size: int = 1,
 | 
				
			||||||
 | 
					    expert_model_parallel_size: int = 1,
 | 
				
			||||||
 | 
					    virtual_pipeline_model_parallel_size: Optional[int] = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    """Convert checkpoint between MCA and HuggingFace formats.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        checkpoint_path: Path to the checkpoint to convert
 | 
				
			||||||
 | 
					        output_path: Path to save the converted checkpoint
 | 
				
			||||||
 | 
					        bf16: Use bfloat16 precision
 | 
				
			||||||
 | 
					        fp16: Use float16 precision
 | 
				
			||||||
 | 
					        convert_model_max_length: Change the model_max_length in hf config.json
 | 
				
			||||||
 | 
					        tensor_model_parallel_size: Tensor model parallel size
 | 
				
			||||||
 | 
					        pipeline_model_parallel_size: Pipeline model parallel size
 | 
				
			||||||
 | 
					        expert_model_parallel_size: Expert model parallel size
 | 
				
			||||||
 | 
					        virtual_pipeline_model_parallel_size: Virtual pipeline model parallel size
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if bf16 and fp16:
 | 
				
			||||||
 | 
					        raise ValueError("bf16 and fp16 cannot be both True.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    mca_config_path = os.path.join(checkpoint_path, "mca_config.json")
 | 
				
			||||||
 | 
					    from_mca = os.path.exists(mca_config_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not from_mca:
 | 
				
			||||||
 | 
					        dist_args = DistributingParallelArguments(
 | 
				
			||||||
 | 
					            tensor_model_parallel_size=tensor_model_parallel_size,
 | 
				
			||||||
 | 
					            pipeline_model_parallel_size=pipeline_model_parallel_size,
 | 
				
			||||||
 | 
					            expert_model_parallel_size=expert_model_parallel_size,
 | 
				
			||||||
 | 
					            virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        convert_checkpoint_to_mca(
 | 
				
			||||||
 | 
					            checkpoint_path,
 | 
				
			||||||
 | 
					            output_path,
 | 
				
			||||||
 | 
					            dist_args,
 | 
				
			||||||
 | 
					            bf16=bf16,
 | 
				
			||||||
 | 
					            fp16=fp16,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        convert_mca_to_hf(
 | 
				
			||||||
 | 
					            checkpoint_path=checkpoint_path,
 | 
				
			||||||
 | 
					            output_path=output_path,
 | 
				
			||||||
 | 
					            bf16=bf16,
 | 
				
			||||||
 | 
					            fp16=fp16,
 | 
				
			||||||
 | 
					            convert_model_max_length=convert_model_max_length,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main():
 | 
				
			||||||
 | 
					    fire.Fire(convert)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
@ -56,6 +56,8 @@ LAYERNORM_NAMES = {"norm", "ln"}
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
 | 
					LLAMABOARD_CONFIG = "llamaboard_config.yaml"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					MCA_SUPPORTED_MODELS = {"deepseek_v3", "llama", "mistral", "mixtral", "qwen2", "qwen2_vl", "qwen2_5_vl", "qwen3", "qwen3_moe", "qwen3_next"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
METHODS = ["full", "freeze", "lora", "oft"]
 | 
					METHODS = ["full", "freeze", "lora", "oft"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
 | 
					MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
 | 
				
			||||||
 | 
				
			|||||||
@ -70,6 +70,10 @@ def is_matplotlib_available():
 | 
				
			|||||||
    return _is_package_available("matplotlib")
 | 
					    return _is_package_available("matplotlib")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def is_mcore_adapter_available():
 | 
				
			||||||
 | 
					    return _is_package_available("mcore_adapter")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def is_pillow_available():
 | 
					def is_pillow_available():
 | 
				
			||||||
    return _is_package_available("PIL")
 | 
					    return _is_package_available("PIL")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -461,7 +461,7 @@ class FinetuningArguments(
 | 
				
			|||||||
        default="sft",
 | 
					        default="sft",
 | 
				
			||||||
        metadata={"help": "Which stage will be performed in training."},
 | 
					        metadata={"help": "Which stage will be performed in training."},
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    finetuning_type: Literal["lora", "freeze", "full"] = field(
 | 
					    finetuning_type: Literal["lora", "oft", "freeze", "full"] = field(
 | 
				
			||||||
        default="lora",
 | 
					        default="lora",
 | 
				
			||||||
        metadata={"help": "Which fine-tuning method to use."},
 | 
					        metadata={"help": "Which fine-tuning method to use."},
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
@ -473,6 +473,10 @@ class FinetuningArguments(
 | 
				
			|||||||
        default=False,
 | 
					        default=False,
 | 
				
			||||||
        metadata={"help": "Whether or not to use the Adam-mini optimizer."},
 | 
					        metadata={"help": "Whether or not to use the Adam-mini optimizer."},
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					    use_mca: bool = field(
 | 
				
			||||||
 | 
					        default=False,
 | 
				
			||||||
 | 
					        metadata={"help": "Whether or not to use MCA (Megatron Core Adapter) training. Controlled by USE_MCA environment variable."},
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
    use_muon: bool = field(
 | 
					    use_muon: bool = field(
 | 
				
			||||||
        default=False,
 | 
					        default=False,
 | 
				
			||||||
        metadata={"help": "Whether or not to use the Muon optimizer."},
 | 
					        metadata={"help": "Whether or not to use the Muon optimizer."},
 | 
				
			||||||
 | 
				
			|||||||
@ -32,7 +32,7 @@ from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_availab
 | 
				
			|||||||
from ..extras import logging
 | 
					from ..extras import logging
 | 
				
			||||||
from ..extras.constants import CHECKPOINT_NAMES, EngineName
 | 
					from ..extras.constants import CHECKPOINT_NAMES, EngineName
 | 
				
			||||||
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
 | 
					from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
 | 
				
			||||||
from ..extras.packages import is_transformers_version_greater_than
 | 
					from ..extras.packages import is_mcore_adapter_available, is_transformers_version_greater_than
 | 
				
			||||||
from .data_args import DataArguments
 | 
					from .data_args import DataArguments
 | 
				
			||||||
from .evaluation_args import EvaluationArguments
 | 
					from .evaluation_args import EvaluationArguments
 | 
				
			||||||
from .finetuning_args import FinetuningArguments
 | 
					from .finetuning_args import FinetuningArguments
 | 
				
			||||||
@ -53,6 +53,13 @@ _INFER_CLS = tuple[ModelArguments, DataArguments, FinetuningArguments, Generatin
 | 
				
			|||||||
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
 | 
					_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
 | 
				
			||||||
_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
 | 
					_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if is_mcore_adapter_available() and is_env_enabled("USE_MCA"):
 | 
				
			||||||
 | 
					    from mcore_adapter import TrainingArguments as McaTrainingArguments
 | 
				
			||||||
 | 
					    _TRAIN_MCA_ARGS = [ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
 | 
				
			||||||
 | 
					    _TRAIN_MCA_CLS = tuple[ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
 | 
				
			||||||
 | 
					else:
 | 
				
			||||||
 | 
					    _TRAIN_MCA_ARGS = []
 | 
				
			||||||
 | 
					    _TRAIN_MCA_CLS = tuple()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
 | 
					def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
 | 
				
			||||||
    r"""Get arguments from the command line or a config file."""
 | 
					    r"""Get arguments from the command line or a config file."""
 | 
				
			||||||
@ -197,6 +204,27 @@ def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -
 | 
				
			|||||||
    return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
 | 
					    return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _parse_train_mca_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_MCA_CLS:
 | 
				
			||||||
 | 
					    parser = HfArgumentParser(_TRAIN_MCA_ARGS)
 | 
				
			||||||
 | 
					    allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
 | 
				
			||||||
 | 
					    model_args, data_args, training_args, finetuning_args, generating_args = _parse_args(
 | 
				
			||||||
 | 
					        parser, args, allow_extra_keys=allow_extra_keys
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    _configure_mca_training_args(training_args, data_args, finetuning_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return model_args, data_args, training_args, finetuning_args, generating_args
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _configure_mca_training_args(training_args, data_args, finetuning_args) -> None:
 | 
				
			||||||
 | 
					    """Patch training args to avoid args checking errors and sync MCA settings."""
 | 
				
			||||||
 | 
					    training_args.predict_with_generate = False
 | 
				
			||||||
 | 
					    training_args.generation_max_length = data_args.cutoff_len
 | 
				
			||||||
 | 
					    training_args.generation_num_beams = 1
 | 
				
			||||||
 | 
					    training_args.use_mca = True
 | 
				
			||||||
 | 
					    finetuning_args.use_mca = True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
 | 
					def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
 | 
				
			||||||
    parser = HfArgumentParser(_INFER_ARGS)
 | 
					    parser = HfArgumentParser(_INFER_ARGS)
 | 
				
			||||||
    allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
 | 
					    allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
 | 
				
			||||||
@ -216,7 +244,11 @@ def get_ray_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Ray
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
 | 
					def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
 | 
				
			||||||
    model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
 | 
					    if is_env_enabled("USE_MCA"):
 | 
				
			||||||
 | 
					        model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_mca_args(args)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
 | 
				
			||||||
 | 
					        finetuning_args.use_mca = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Setup logging
 | 
					    # Setup logging
 | 
				
			||||||
    if training_args.should_log:
 | 
					    if training_args.should_log:
 | 
				
			||||||
 | 
				
			|||||||
@ -19,7 +19,20 @@ from typing import Literal, Optional, Union
 | 
				
			|||||||
from transformers import Seq2SeqTrainingArguments
 | 
					from transformers import Seq2SeqTrainingArguments
 | 
				
			||||||
from transformers.training_args import _convert_str_dict
 | 
					from transformers.training_args import _convert_str_dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ..extras.misc import use_ray
 | 
					from ..extras.misc import is_env_enabled, use_ray
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if is_env_enabled("USE_MCA"):
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        from mcore_adapter import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
 | 
				
			||||||
 | 
					        BaseTrainingArguments = McaSeq2SeqTrainingArguments
 | 
				
			||||||
 | 
					    except ImportError:
 | 
				
			||||||
 | 
					        raise ImportError(
 | 
				
			||||||
 | 
					            "mcore_adapter is required when USE_MCA=1.",
 | 
				
			||||||
 | 
					            "Please install `mcore_adapter` and its dependencies."
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					else:
 | 
				
			||||||
 | 
					    BaseTrainingArguments = Seq2SeqTrainingArguments
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@dataclass
 | 
					@dataclass
 | 
				
			||||||
@ -78,7 +91,7 @@ class RayArguments:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@dataclass
 | 
					@dataclass
 | 
				
			||||||
class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
 | 
					class TrainingArguments(RayArguments, BaseTrainingArguments):
 | 
				
			||||||
    r"""Arguments pertaining to the trainer."""
 | 
					    r"""Arguments pertaining to the trainer."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    overwrite_output_dir: bool = field(
 | 
					    overwrite_output_dir: bool = field(
 | 
				
			||||||
@ -87,5 +100,5 @@ class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
 | 
				
			|||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __post_init__(self):
 | 
					    def __post_init__(self):
 | 
				
			||||||
        Seq2SeqTrainingArguments.__post_init__(self)
 | 
					 | 
				
			||||||
        RayArguments.__post_init__(self)
 | 
					        RayArguments.__post_init__(self)
 | 
				
			||||||
 | 
					        BaseTrainingArguments.__post_init__(self)
 | 
				
			||||||
 | 
				
			|||||||
@ -54,6 +54,10 @@ def launch():
 | 
				
			|||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
 | 
					    command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
 | 
				
			||||||
 | 
					    if is_env_enabled("USE_MCA"):
 | 
				
			||||||
 | 
					    # force use torchrun
 | 
				
			||||||
 | 
					        os.environ["FORCE_TORCHRUN"] = "1"
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
    if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
 | 
					    if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
 | 
				
			||||||
        # launch distributed training
 | 
					        # launch distributed training
 | 
				
			||||||
        nnodes = os.getenv("NNODES", "1")
 | 
					        nnodes = os.getenv("NNODES", "1")
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										19
									
								
								src/llamafactory/train/mca/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								src/llamafactory/train/mca/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,19 @@
 | 
				
			|||||||
 | 
					# Copyright 2025 the LlamaFactory team.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from .workflow import run_dpo, run_pt, run_sft
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					__all__ = ["run_dpo", "run_pt", "run_sft"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										15
									
								
								src/llamafactory/train/mca/trainer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								src/llamafactory/train/mca/trainer.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,15 @@
 | 
				
			|||||||
 | 
					# Copyright 2025 the LlamaFactory team.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# TODO override the original trainer
 | 
				
			||||||
							
								
								
									
										292
									
								
								src/llamafactory/train/mca/workflow.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										292
									
								
								src/llamafactory/train/mca/workflow.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,292 @@
 | 
				
			|||||||
 | 
					# Copyright 2025 the ROLL team and the LlamaFactory team.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					"""MCA (mcore_adapter) workflows for PT/SFT/DPO stages, aligned with LLaMA-Factory's workflow style."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from __future__ import annotations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import functools
 | 
				
			||||||
 | 
					from collections.abc import Sequence
 | 
				
			||||||
 | 
					from copy import deepcopy
 | 
				
			||||||
 | 
					from typing import TYPE_CHECKING, Any
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ...data import (
 | 
				
			||||||
 | 
					    SFTDataCollatorWith4DAttentionMask,
 | 
				
			||||||
 | 
					    get_dataset,
 | 
				
			||||||
 | 
					    get_template_and_fix_tokenizer,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					from ...data.collator import (
 | 
				
			||||||
 | 
					    PairwiseDataCollatorWithPadding,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					from ...extras.constants import IGNORE_INDEX, MCA_SUPPORTED_MODELS
 | 
				
			||||||
 | 
					from ...extras.logging import get_logger
 | 
				
			||||||
 | 
					from ...extras.misc import calculate_tps
 | 
				
			||||||
 | 
					from ...extras.packages import is_mcore_adapter_available
 | 
				
			||||||
 | 
					from ...extras.ploting import plot_loss
 | 
				
			||||||
 | 
					from ...model import load_tokenizer
 | 
				
			||||||
 | 
					from ..callbacks import SaveProcessorCallback
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if not is_mcore_adapter_available():
 | 
				
			||||||
 | 
					    raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from mcore_adapter.models import AutoConfig, AutoModel
 | 
				
			||||||
 | 
					from mcore_adapter.trainer import DPOTrainer as McaDPOTrainer
 | 
				
			||||||
 | 
					from mcore_adapter.trainer import McaTrainer
 | 
				
			||||||
 | 
					from mcore_adapter.trainer.dpo_config import DPOConfig
 | 
				
			||||||
 | 
					from mcore_adapter.training_args import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if TYPE_CHECKING:
 | 
				
			||||||
 | 
					    from transformers import DataCollatorForSeq2Seq, TrainerCallback
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    from ...hparams import DataArguments, FinetuningArguments, ModelArguments
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					logger = get_logger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _data_collator_wrapper(data_collator: Any):
 | 
				
			||||||
 | 
					    @functools.wraps(data_collator)
 | 
				
			||||||
 | 
					    def wrapper(features: Sequence[dict[str, Any]]):
 | 
				
			||||||
 | 
					        labels_key = [k for k in features[0].keys() if k.endswith("labels")]
 | 
				
			||||||
 | 
					        input_ids_key = [k for k in features[0].keys() if k.endswith("input_ids")]
 | 
				
			||||||
 | 
					        for feature in features:
 | 
				
			||||||
 | 
					            if len(labels_key) == 0:  # pt
 | 
				
			||||||
 | 
					                feature["labels"] = deepcopy(feature["input_ids"])[1:]
 | 
				
			||||||
 | 
					            for k in labels_key:
 | 
				
			||||||
 | 
					                feature[k] = feature[k][1:]
 | 
				
			||||||
 | 
					            for k in input_ids_key:
 | 
				
			||||||
 | 
					                feature[k] = feature[k][:-1]
 | 
				
			||||||
 | 
					            for k in ["attention_mask", "position_ids"]:
 | 
				
			||||||
 | 
					                if k in feature:
 | 
				
			||||||
 | 
					                    feature[k] = feature[k][:-1]
 | 
				
			||||||
 | 
					        return data_collator(features)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return wrapper
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _check_model_support(model_args: ModelArguments):
 | 
				
			||||||
 | 
					    from transformers import AutoConfig as HfAutoConfig
 | 
				
			||||||
 | 
					    config = HfAutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
 | 
				
			||||||
 | 
					    if config.model_type not in MCA_SUPPORTED_MODELS:
 | 
				
			||||||
 | 
					        raise ValueError(f"Model {config.model_type} is not supported by MCA.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_pt(
 | 
				
			||||||
 | 
					    model_args: ModelArguments,
 | 
				
			||||||
 | 
					    data_args: DataArguments,
 | 
				
			||||||
 | 
					    training_args: McaSeq2SeqTrainingArguments,
 | 
				
			||||||
 | 
					    finetuning_args: FinetuningArguments,
 | 
				
			||||||
 | 
					    callbacks: list[TrainerCallback] | None = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    tokenizer_module = load_tokenizer(model_args)
 | 
				
			||||||
 | 
					    tokenizer = tokenizer_module["tokenizer"]
 | 
				
			||||||
 | 
					    template = get_template_and_fix_tokenizer(tokenizer, data_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # dataset needs +1 then cut back due to MCA shift logic
 | 
				
			||||||
 | 
					    data_args.cutoff_len += 1
 | 
				
			||||||
 | 
					    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="pt", **tokenizer_module)
 | 
				
			||||||
 | 
					    data_args.cutoff_len -= 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    _check_model_support(model_args)
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    from transformers import DataCollatorForSeq2Seq
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    data_collator: DataCollatorForSeq2Seq = DataCollatorForSeq2Seq(
 | 
				
			||||||
 | 
					        tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        pad_to_multiple_of=8,
 | 
				
			||||||
 | 
					        label_pad_token_id=IGNORE_INDEX,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    data_collator = _data_collator_wrapper(data_collator)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    trainer = McaTrainer(
 | 
				
			||||||
 | 
					        model=model,
 | 
				
			||||||
 | 
					        args=training_args,
 | 
				
			||||||
 | 
					        tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        data_collator=data_collator,
 | 
				
			||||||
 | 
					        callbacks=callbacks,
 | 
				
			||||||
 | 
					        **dataset_module,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
 | 
				
			||||||
 | 
					        trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if training_args.do_train:
 | 
				
			||||||
 | 
					        train_result = trainer.train(training_args.resume_from_checkpoint)
 | 
				
			||||||
 | 
					        trainer.save_model()
 | 
				
			||||||
 | 
					        trainer.log_metrics("train", train_result.metrics)
 | 
				
			||||||
 | 
					        trainer.save_metrics("train", train_result.metrics)
 | 
				
			||||||
 | 
					        trainer.save_state()
 | 
				
			||||||
 | 
					        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
				
			||||||
 | 
					            keys = ["loss"]
 | 
				
			||||||
 | 
					            if isinstance(dataset_module.get("eval_dataset"), dict):
 | 
				
			||||||
 | 
					                keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                keys += ["eval_loss"]
 | 
				
			||||||
 | 
					            plot_loss(training_args.output_dir, keys=keys)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_sft(
 | 
				
			||||||
 | 
					    model_args: ModelArguments,
 | 
				
			||||||
 | 
					    data_args: DataArguments,
 | 
				
			||||||
 | 
					    training_args: McaSeq2SeqTrainingArguments,
 | 
				
			||||||
 | 
					    finetuning_args: FinetuningArguments,
 | 
				
			||||||
 | 
					    callbacks: list[TrainerCallback] | None = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    # align packing flags
 | 
				
			||||||
 | 
					    # TODO: FIX SequencePacking
 | 
				
			||||||
 | 
					    data_args.neat_packing = training_args.sequence_packing = data_args.neat_packing or training_args.sequence_packing
 | 
				
			||||||
 | 
					    data_args.packing = data_args.neat_packing or data_args.packing
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    tokenizer_module = load_tokenizer(model_args)
 | 
				
			||||||
 | 
					    tokenizer = tokenizer_module["tokenizer"]
 | 
				
			||||||
 | 
					    template = get_template_and_fix_tokenizer(tokenizer, data_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # dataset needs +1 then cut back due to MCA shift logic
 | 
				
			||||||
 | 
					    data_args.cutoff_len += 1
 | 
				
			||||||
 | 
					    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
 | 
				
			||||||
 | 
					    data_args.cutoff_len -= 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    _check_model_support(model_args)
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # optional freezing for qwen2_vl, qwen2_5_vl
 | 
				
			||||||
 | 
					    if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_vision_tower:
 | 
				
			||||||
 | 
					        for name, p in model.named_parameters():
 | 
				
			||||||
 | 
					            if any(name.startswith(k) for k in ["vision_model.blocks", "vision_model.patch_embed"]):
 | 
				
			||||||
 | 
					                p.requires_grad_(False)
 | 
				
			||||||
 | 
					    if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_multi_modal_projector:
 | 
				
			||||||
 | 
					        for name, p in model.named_parameters():
 | 
				
			||||||
 | 
					            if any(name.startswith(k) for k in ["multi_modal_projector"]):
 | 
				
			||||||
 | 
					                p.requires_grad_(False)
 | 
				
			||||||
 | 
					    if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_language_model:
 | 
				
			||||||
 | 
					        for name, p in model.named_parameters():
 | 
				
			||||||
 | 
					            if any(name.startswith(k) for k in ["embedding", "decoder", "output_layer"]):
 | 
				
			||||||
 | 
					                p.requires_grad_(False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pad_to_max = (
 | 
				
			||||||
 | 
					        training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    data_collator = SFTDataCollatorWith4DAttentionMask(
 | 
				
			||||||
 | 
					        template=template,
 | 
				
			||||||
 | 
					        padding="max_length" if pad_to_max else "longest",
 | 
				
			||||||
 | 
					        max_length=data_args.cutoff_len if pad_to_max else None,
 | 
				
			||||||
 | 
					        pad_to_multiple_of=64,
 | 
				
			||||||
 | 
					        label_pad_token_id=IGNORE_INDEX,
 | 
				
			||||||
 | 
					        **tokenizer_module,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    data_collator = _data_collator_wrapper(data_collator)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    trainer = McaTrainer(
 | 
				
			||||||
 | 
					        model=model,
 | 
				
			||||||
 | 
					        args=training_args,
 | 
				
			||||||
 | 
					        tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        data_collator=data_collator,
 | 
				
			||||||
 | 
					        callbacks=callbacks,
 | 
				
			||||||
 | 
					        **dataset_module,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
 | 
				
			||||||
 | 
					        trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    train_result = trainer.train(training_args.resume_from_checkpoint)
 | 
				
			||||||
 | 
					    trainer.save_model()
 | 
				
			||||||
 | 
					    trainer.log_metrics("train", train_result.metrics)
 | 
				
			||||||
 | 
					    trainer.save_metrics("train", train_result.metrics)
 | 
				
			||||||
 | 
					    trainer.save_state()
 | 
				
			||||||
 | 
					    if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
				
			||||||
 | 
					        keys = ["loss"]
 | 
				
			||||||
 | 
					        if isinstance(dataset_module.get("eval_dataset"), dict):
 | 
				
			||||||
 | 
					            keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            keys += ["eval_loss"]
 | 
				
			||||||
 | 
					        plot_loss(training_args.output_dir, keys=keys)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_dpo(
 | 
				
			||||||
 | 
					    model_args: ModelArguments,
 | 
				
			||||||
 | 
					    data_args: DataArguments,
 | 
				
			||||||
 | 
					    training_args: McaSeq2SeqTrainingArguments,
 | 
				
			||||||
 | 
					    finetuning_args: FinetuningArguments,
 | 
				
			||||||
 | 
					    callbacks: list[TrainerCallback] | None = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    tokenizer_module = load_tokenizer(model_args)
 | 
				
			||||||
 | 
					    tokenizer = tokenizer_module["tokenizer"]
 | 
				
			||||||
 | 
					    template = get_template_and_fix_tokenizer(tokenizer, data_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    _check_model_support(model_args)
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if finetuning_args.use_ref_model:
 | 
				
			||||||
 | 
					        ref_config = AutoConfig.from_pretrained(model_args.model_name_or_path, training_args)
 | 
				
			||||||
 | 
					        ref_model = AutoModel.from_config(ref_config)
 | 
				
			||||||
 | 
					        ref_model.load_state_dict(model.state_dict())
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        ref_model = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # dataset needs +1 then cut back due to MCA shift logic
 | 
				
			||||||
 | 
					    data_args.cutoff_len += 1
 | 
				
			||||||
 | 
					    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
 | 
				
			||||||
 | 
					    data_args.cutoff_len -= 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pad_to_max = (
 | 
				
			||||||
 | 
					        training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    dpo_config = DPOConfig(
 | 
				
			||||||
 | 
					        beta=finetuning_args.pref_beta,
 | 
				
			||||||
 | 
					        pref_loss=finetuning_args.pref_loss,
 | 
				
			||||||
 | 
					        label_smoothing=finetuning_args.dpo_label_smoothing,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    data_collator = PairwiseDataCollatorWithPadding(
 | 
				
			||||||
 | 
					        template=template,
 | 
				
			||||||
 | 
					        pad_to_multiple_of=64,
 | 
				
			||||||
 | 
					        padding="max_length" if pad_to_max else "longest",
 | 
				
			||||||
 | 
					        max_length=data_args.cutoff_len if pad_to_max else None,
 | 
				
			||||||
 | 
					        label_pad_token_id=IGNORE_INDEX,
 | 
				
			||||||
 | 
					        **tokenizer_module,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    data_collator = _data_collator_wrapper(data_collator)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    trainer = McaDPOTrainer(
 | 
				
			||||||
 | 
					        model=model,
 | 
				
			||||||
 | 
					        ref_model=ref_model,
 | 
				
			||||||
 | 
					        args=training_args,
 | 
				
			||||||
 | 
					        train_config=dpo_config,
 | 
				
			||||||
 | 
					        tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        data_collator=data_collator,
 | 
				
			||||||
 | 
					        callbacks=callbacks,
 | 
				
			||||||
 | 
					        **dataset_module,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
 | 
				
			||||||
 | 
					        trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    train_result = trainer.train(training_args.resume_from_checkpoint)
 | 
				
			||||||
 | 
					    trainer.save_model()
 | 
				
			||||||
 | 
					    if finetuning_args.include_effective_tokens_per_second:
 | 
				
			||||||
 | 
					        train_result.metrics["effective_tokens_per_sec"] = calculate_tps(
 | 
				
			||||||
 | 
					            dataset_module["train_dataset"], train_result.metrics, stage="rm"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    trainer.log_metrics("train", train_result.metrics)
 | 
				
			||||||
 | 
					    trainer.save_metrics("train", train_result.metrics)
 | 
				
			||||||
 | 
					    trainer.save_state()
 | 
				
			||||||
 | 
					    if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
				
			||||||
 | 
					        keys = ["loss", "rewards/accuracies"]
 | 
				
			||||||
 | 
					        if isinstance(dataset_module.get("eval_dataset"), dict):
 | 
				
			||||||
 | 
					            keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            keys += ["eval_loss"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        plot_loss(training_args.output_dir, keys=keys)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -24,7 +24,7 @@ from ..data import get_template_and_fix_tokenizer
 | 
				
			|||||||
from ..extras import logging
 | 
					from ..extras import logging
 | 
				
			||||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
 | 
					from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
 | 
				
			||||||
from ..extras.misc import infer_optim_dtype
 | 
					from ..extras.misc import infer_optim_dtype
 | 
				
			||||||
from ..extras.packages import is_ray_available
 | 
					from ..extras.packages import is_mcore_adapter_available, is_ray_available
 | 
				
			||||||
from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args
 | 
					from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args
 | 
				
			||||||
from ..model import load_model, load_tokenizer
 | 
					from ..model import load_model, load_tokenizer
 | 
				
			||||||
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
 | 
					from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
 | 
				
			||||||
@ -66,7 +66,19 @@ def _training_function(config: dict[str, Any]) -> None:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args))  # add to last
 | 
					    callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args))  # add to last
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if finetuning_args.stage == "pt":
 | 
					    if finetuning_args.stage in ["pt", "sft", "dpo"] and finetuning_args.use_mca:
 | 
				
			||||||
 | 
					        if not is_mcore_adapter_available():
 | 
				
			||||||
 | 
					            raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
 | 
				
			||||||
 | 
					        if finetuning_args.stage == "pt":
 | 
				
			||||||
 | 
					            from .mca import run_pt as run_pt_mca
 | 
				
			||||||
 | 
					            run_pt_mca(model_args, data_args, training_args, finetuning_args, callbacks)
 | 
				
			||||||
 | 
					        elif finetuning_args.stage == "sft":
 | 
				
			||||||
 | 
					            from .mca import run_sft as run_sft_mca
 | 
				
			||||||
 | 
					            run_sft_mca(model_args, data_args, training_args, finetuning_args, callbacks)
 | 
				
			||||||
 | 
					        else:  # dpo
 | 
				
			||||||
 | 
					            from .mca import run_dpo as run_dpo_mca
 | 
				
			||||||
 | 
					            run_dpo_mca(model_args, data_args, training_args, finetuning_args, callbacks)
 | 
				
			||||||
 | 
					    elif finetuning_args.stage == "pt":
 | 
				
			||||||
        run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
 | 
					        run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
 | 
				
			||||||
    elif finetuning_args.stage == "sft":
 | 
					    elif finetuning_args.stage == "sft":
 | 
				
			||||||
        run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
 | 
					        run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user