drafting ray integration

Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>

Former-commit-id: 163ddb680b6f84a4424a887a3b8a5d668044e87c
This commit is contained in:
Kourosh Hakhamaneshi 2024-12-30 16:48:52 -08:00 committed by hiyouga
parent a0bcac80c0
commit 1217240918
9 changed files with 143 additions and 21 deletions

View File

@ -9,6 +9,7 @@ finetuning_type: lora
lora_target: all
### dataset
dataset_dir: /home/ray/default/lf/data/
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
@ -38,3 +39,10 @@ val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### ray setup
resources_per_worker:
GPU: 1
num_workers: 4
# placement_strategy: ...

View File

@ -27,7 +27,7 @@ from .extras.env import VERSION, print_env
from .extras.misc import get_device_count
from .train.tuner import export_model, run_exp
from .webui.interface import run_web_demo, run_web_ui
from .integrations.ray.ray_utils import should_use_ray
USAGE = (
"-" * 70
@ -87,7 +87,8 @@ def main():
export_model()
elif command == Command.TRAIN:
force_torchrun = os.getenv("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
if force_torchrun or get_device_count() > 1:
use_ray = should_use_ray()
if force_torchrun or (get_device_count() > 1 and not use_ray):
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")

View File

@ -19,6 +19,10 @@ import os
import sys
from typing import Any, Dict, Optional, Tuple
import json
import yaml
from pathlib import Path
import torch
import transformers
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
@ -37,39 +41,51 @@ from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments
from ..integrations.ray.ray_train_args import RayTrainArguments
logger = logging.get_logger(__name__)
check_dependencies()
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments, RayTrainArguments]
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments, RayTrainArguments]
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
def _read_args(args: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
if args is not None:
return parser.parse_dict(args)
return args
if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
# read yaml file
return yaml.safe_load(Path(sys.argv[1]).absolute().read_text())
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# read json file
return json.loads(Path(sys.argv[1]).absolute().read_text())
else:
return {}
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None, allow_extra_keys: bool = False) -> Tuple[Any]:
if unknown_args:
print(parser.format_help())
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
args_dict = _read_args(args)
if args_dict:
return parser.parse_dict(args_dict, allow_extra_keys=allow_extra_keys)
else:
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args=args_dict, return_remaining_strings=True)
if unknown_args:
print(parser.format_help())
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
return (*parsed_args,)
return (*parsed_args,)
def _set_transformers_logging() -> None:
@ -161,8 +177,16 @@ def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
return _parse_args(parser, args)
def _parse_ray_args(args: Optional[Dict[str, Any]] = None) -> RayTrainArguments:
parser = HfArgumentParser(RayTrainArguments)
ray_args = _parse_args(parser, args, allow_extra_keys=True)[0]
if ray_args.use_ray:
require_version("ray", "To fix: pip install ray")
return ray_args
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
model_args, data_args, training_args, finetuning_args, generating_args, _ = _parse_train_args(args)
# Setup logging
if training_args.should_log:

View File

@ -0,0 +1,28 @@
from typing import Any, Callable, Dict
from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig
from .ray_train_args import RayTrainArguments
def get_ray_trainer(
training_function: Callable,
train_loop_config: Dict[str, Any],
ray_args: RayTrainArguments,
) -> TorchTrainer:
if not ray_args.use_ray:
raise ValueError("Ray is not enabled. Please set USE_RAY=1 in your environment.")
trainer = TorchTrainer(
training_function,
train_loop_config=train_loop_config,
scaling_config=ScalingConfig(
num_workers=ray_args.num_workers,
resources_per_worker=ray_args.resources_per_worker,
use_gpu=True,
),
)
return trainer

View File

@ -0,0 +1,22 @@
from dataclasses import dataclass, field
from typing import Any, Dict, Literal, Optional
from .ray_utils import should_use_ray
@dataclass
class RayTrainArguments:
r"""
Arguments pertaining to the Ray training.
"""
resources_per_worker: Optional[Dict[str, Any]] = field(default_factory=lambda: {"GPU": 1}, metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."})
num_workers: Optional[int] = field(default=1, metadata={"help": "The number of workers for Ray training. Default is 1 worker."})
placement_strategy: Optional[Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"]] = field(default="PACK", metadata={"help": "The placement strategy for Ray training. Default is PACK."})
@property
def use_ray(self) -> bool:
"""
Always returns the value from the environment variable check.
This prevents manual setting of use_ray.
"""
return should_use_ray()

View File

@ -0,0 +1,9 @@
import os
def should_use_ray():
return os.getenv("USE_RAY", "0").lower() in ["true", "1"]

View File

@ -23,6 +23,7 @@ from ..data import get_template_and_fix_tokenizer
from ..extras import logging
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..hparams import get_infer_args, get_train_args
from ..hparams.parser import _parse_ray_args, _read_args
from ..model import load_model, load_tokenizer
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
from .dpo import run_dpo
@ -40,8 +41,10 @@ if TYPE_CHECKING:
logger = logging.get_logger(__name__)
def training_function(config: Dict[str, Any]) -> None:
args = config.get("args", None)
callbacks = config.get("callbacks", [])
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
callbacks.append(LogCallback())
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
@ -68,6 +71,33 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallb
else:
raise ValueError(f"Unknown task: {finetuning_args.stage}.")
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
args_dict = _read_args(args)
ray_args = _parse_ray_args(args_dict)
if ray_args.use_ray:
# Import lazily to avoid ray not installed error
from ..integrations.ray.ray_train import get_ray_trainer
# Initialize ray trainer
trainer = get_ray_trainer(
training_function=training_function,
train_loop_config={
"args": args_dict,
"callbacks": callbacks,
},
ray_args=ray_args,
)
trainer.fit()
else:
training_function(
config={
"args": args_dict,
"callbacks": callbacks,
}
)
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
model_args, data_args, finetuning_args, _ = get_infer_args(args)