mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
drafting ray integration
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com> Former-commit-id: 163ddb680b6f84a4424a887a3b8a5d668044e87c
This commit is contained in:
parent
a0bcac80c0
commit
1217240918
@ -9,6 +9,7 @@ finetuning_type: lora
|
|||||||
lora_target: all
|
lora_target: all
|
||||||
|
|
||||||
### dataset
|
### dataset
|
||||||
|
dataset_dir: /home/ray/default/lf/data/
|
||||||
dataset: identity,alpaca_en_demo
|
dataset: identity,alpaca_en_demo
|
||||||
template: llama3
|
template: llama3
|
||||||
cutoff_len: 2048
|
cutoff_len: 2048
|
||||||
@ -38,3 +39,10 @@ val_size: 0.1
|
|||||||
per_device_eval_batch_size: 1
|
per_device_eval_batch_size: 1
|
||||||
eval_strategy: steps
|
eval_strategy: steps
|
||||||
eval_steps: 500
|
eval_steps: 500
|
||||||
|
|
||||||
|
|
||||||
|
### ray setup
|
||||||
|
resources_per_worker:
|
||||||
|
GPU: 1
|
||||||
|
num_workers: 4
|
||||||
|
# placement_strategy: ...
|
||||||
|
@ -27,7 +27,7 @@ from .extras.env import VERSION, print_env
|
|||||||
from .extras.misc import get_device_count
|
from .extras.misc import get_device_count
|
||||||
from .train.tuner import export_model, run_exp
|
from .train.tuner import export_model, run_exp
|
||||||
from .webui.interface import run_web_demo, run_web_ui
|
from .webui.interface import run_web_demo, run_web_ui
|
||||||
|
from .integrations.ray.ray_utils import should_use_ray
|
||||||
|
|
||||||
USAGE = (
|
USAGE = (
|
||||||
"-" * 70
|
"-" * 70
|
||||||
@ -87,7 +87,8 @@ def main():
|
|||||||
export_model()
|
export_model()
|
||||||
elif command == Command.TRAIN:
|
elif command == Command.TRAIN:
|
||||||
force_torchrun = os.getenv("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
force_torchrun = os.getenv("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
||||||
if force_torchrun or get_device_count() > 1:
|
use_ray = should_use_ray()
|
||||||
|
if force_torchrun or (get_device_count() > 1 and not use_ray):
|
||||||
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
|
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
|
||||||
master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
|
master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
|
||||||
logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")
|
logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")
|
||||||
|
@ -19,6 +19,10 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
from typing import Any, Dict, Optional, Tuple
|
from typing import Any, Dict, Optional, Tuple
|
||||||
|
|
||||||
|
import json
|
||||||
|
import yaml
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
||||||
@ -37,39 +41,51 @@ from .finetuning_args import FinetuningArguments
|
|||||||
from .generating_args import GeneratingArguments
|
from .generating_args import GeneratingArguments
|
||||||
from .model_args import ModelArguments
|
from .model_args import ModelArguments
|
||||||
|
|
||||||
|
from ..integrations.ray.ray_train_args import RayTrainArguments
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
check_dependencies()
|
check_dependencies()
|
||||||
|
|
||||||
|
|
||||||
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
|
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments, RayTrainArguments]
|
||||||
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
|
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments, RayTrainArguments]
|
||||||
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||||
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||||
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
||||||
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
||||||
|
|
||||||
|
|
||||||
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
|
def _read_args(args: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
||||||
if args is not None:
|
if args is not None:
|
||||||
return parser.parse_dict(args)
|
return args
|
||||||
|
|
||||||
if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
|
if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
|
||||||
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
|
# read yaml file
|
||||||
|
return yaml.safe_load(Path(sys.argv[1]).absolute().read_text())
|
||||||
|
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||||
|
# read json file
|
||||||
|
return json.loads(Path(sys.argv[1]).absolute().read_text())
|
||||||
|
else:
|
||||||
|
return {}
|
||||||
|
|
||||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
||||||
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
|
|
||||||
|
|
||||||
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)
|
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None, allow_extra_keys: bool = False) -> Tuple[Any]:
|
||||||
|
|
||||||
if unknown_args:
|
args_dict = _read_args(args)
|
||||||
print(parser.format_help())
|
|
||||||
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
|
if args_dict:
|
||||||
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
|
return parser.parse_dict(args_dict, allow_extra_keys=allow_extra_keys)
|
||||||
|
else:
|
||||||
|
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args=args_dict, return_remaining_strings=True)
|
||||||
|
|
||||||
return (*parsed_args,)
|
if unknown_args:
|
||||||
|
print(parser.format_help())
|
||||||
|
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
|
||||||
|
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
|
||||||
|
|
||||||
|
return (*parsed_args,)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def _set_transformers_logging() -> None:
|
def _set_transformers_logging() -> None:
|
||||||
@ -161,9 +177,17 @@ def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
|
|||||||
return _parse_args(parser, args)
|
return _parse_args(parser, args)
|
||||||
|
|
||||||
|
|
||||||
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
def _parse_ray_args(args: Optional[Dict[str, Any]] = None) -> RayTrainArguments:
|
||||||
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
|
parser = HfArgumentParser(RayTrainArguments)
|
||||||
|
ray_args = _parse_args(parser, args, allow_extra_keys=True)[0]
|
||||||
|
if ray_args.use_ray:
|
||||||
|
require_version("ray", "To fix: pip install ray")
|
||||||
|
return ray_args
|
||||||
|
|
||||||
|
|
||||||
|
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||||
|
model_args, data_args, training_args, finetuning_args, generating_args, _ = _parse_train_args(args)
|
||||||
|
|
||||||
# Setup logging
|
# Setup logging
|
||||||
if training_args.should_log:
|
if training_args.should_log:
|
||||||
_set_transformers_logging()
|
_set_transformers_logging()
|
||||||
|
0
src/llamafactory/integrations/__init__.py
Normal file
0
src/llamafactory/integrations/__init__.py
Normal file
0
src/llamafactory/integrations/ray/__init__.py
Normal file
0
src/llamafactory/integrations/ray/__init__.py
Normal file
28
src/llamafactory/integrations/ray/ray_train.py
Normal file
28
src/llamafactory/integrations/ray/ray_train.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
|
||||||
|
from typing import Any, Callable, Dict
|
||||||
|
|
||||||
|
from ray.train.torch import TorchTrainer
|
||||||
|
from ray.train import ScalingConfig
|
||||||
|
|
||||||
|
from .ray_train_args import RayTrainArguments
|
||||||
|
|
||||||
|
|
||||||
|
def get_ray_trainer(
|
||||||
|
training_function: Callable,
|
||||||
|
train_loop_config: Dict[str, Any],
|
||||||
|
ray_args: RayTrainArguments,
|
||||||
|
) -> TorchTrainer:
|
||||||
|
|
||||||
|
if not ray_args.use_ray:
|
||||||
|
raise ValueError("Ray is not enabled. Please set USE_RAY=1 in your environment.")
|
||||||
|
|
||||||
|
trainer = TorchTrainer(
|
||||||
|
training_function,
|
||||||
|
train_loop_config=train_loop_config,
|
||||||
|
scaling_config=ScalingConfig(
|
||||||
|
num_workers=ray_args.num_workers,
|
||||||
|
resources_per_worker=ray_args.resources_per_worker,
|
||||||
|
use_gpu=True,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return trainer
|
22
src/llamafactory/integrations/ray/ray_train_args.py
Normal file
22
src/llamafactory/integrations/ray/ray_train_args.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Any, Dict, Literal, Optional
|
||||||
|
|
||||||
|
from .ray_utils import should_use_ray
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class RayTrainArguments:
|
||||||
|
r"""
|
||||||
|
Arguments pertaining to the Ray training.
|
||||||
|
"""
|
||||||
|
resources_per_worker: Optional[Dict[str, Any]] = field(default_factory=lambda: {"GPU": 1}, metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."})
|
||||||
|
num_workers: Optional[int] = field(default=1, metadata={"help": "The number of workers for Ray training. Default is 1 worker."})
|
||||||
|
placement_strategy: Optional[Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"]] = field(default="PACK", metadata={"help": "The placement strategy for Ray training. Default is PACK."})
|
||||||
|
|
||||||
|
@property
|
||||||
|
def use_ray(self) -> bool:
|
||||||
|
"""
|
||||||
|
Always returns the value from the environment variable check.
|
||||||
|
This prevents manual setting of use_ray.
|
||||||
|
"""
|
||||||
|
return should_use_ray()
|
||||||
|
|
9
src/llamafactory/integrations/ray/ray_utils.py
Normal file
9
src/llamafactory/integrations/ray/ray_utils.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def should_use_ray():
|
||||||
|
return os.getenv("USE_RAY", "0").lower() in ["true", "1"]
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -23,6 +23,7 @@ from ..data import get_template_and_fix_tokenizer
|
|||||||
from ..extras import logging
|
from ..extras import logging
|
||||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||||
from ..hparams import get_infer_args, get_train_args
|
from ..hparams import get_infer_args, get_train_args
|
||||||
|
from ..hparams.parser import _parse_ray_args, _read_args
|
||||||
from ..model import load_model, load_tokenizer
|
from ..model import load_model, load_tokenizer
|
||||||
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
|
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
|
||||||
from .dpo import run_dpo
|
from .dpo import run_dpo
|
||||||
@ -36,12 +37,14 @@ from .trainer_utils import get_swanlab_callback
|
|||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import TrainerCallback
|
from transformers import TrainerCallback
|
||||||
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
def training_function(config: Dict[str, Any]) -> None:
|
||||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
|
args = config.get("args", None)
|
||||||
|
callbacks = config.get("callbacks", [])
|
||||||
|
|
||||||
callbacks.append(LogCallback())
|
callbacks.append(LogCallback())
|
||||||
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
||||||
|
|
||||||
@ -68,6 +71,33 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallb
|
|||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown task: {finetuning_args.stage}.")
|
raise ValueError(f"Unknown task: {finetuning_args.stage}.")
|
||||||
|
|
||||||
|
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
|
||||||
|
|
||||||
|
args_dict = _read_args(args)
|
||||||
|
ray_args = _parse_ray_args(args_dict)
|
||||||
|
|
||||||
|
if ray_args.use_ray:
|
||||||
|
# Import lazily to avoid ray not installed error
|
||||||
|
from ..integrations.ray.ray_train import get_ray_trainer
|
||||||
|
|
||||||
|
# Initialize ray trainer
|
||||||
|
trainer = get_ray_trainer(
|
||||||
|
training_function=training_function,
|
||||||
|
train_loop_config={
|
||||||
|
"args": args_dict,
|
||||||
|
"callbacks": callbacks,
|
||||||
|
},
|
||||||
|
ray_args=ray_args,
|
||||||
|
)
|
||||||
|
trainer.fit()
|
||||||
|
else:
|
||||||
|
training_function(
|
||||||
|
config={
|
||||||
|
"args": args_dict,
|
||||||
|
"callbacks": callbacks,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||||
model_args, data_args, finetuning_args, _ = get_infer_args(args)
|
model_args, data_args, finetuning_args, _ = get_infer_args(args)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user