[v1] add dp & mp mesh (#9611)

This commit is contained in:
Yaowei Zheng
2025-12-13 01:44:28 +08:00
committed by GitHub
parent 203069e11c
commit 110d21713e
3 changed files with 158 additions and 55 deletions

View File

@@ -60,16 +60,16 @@ def get_rank() -> int:
return int(os.getenv("RANK", "0")) return int(os.getenv("RANK", "0"))
def get_local_rank() -> int:
"""Get local rank."""
return int(os.getenv("LOCAL_RANK", "0"))
def get_world_size() -> int: def get_world_size() -> int:
"""Get world size.""" """Get world size."""
return int(os.getenv("WORLD_SIZE", "1")) return int(os.getenv("WORLD_SIZE", "1"))
def get_local_rank() -> int:
"""Get local rank."""
return int(os.getenv("LOCAL_RANK", "0"))
def get_local_world_size() -> int: def get_local_world_size() -> int:
"""Get local world size.""" """Get local world size."""
return int(os.getenv("LOCAL_WORLD_SIZE", "1")) return int(os.getenv("LOCAL_WORLD_SIZE", "1"))
@@ -79,7 +79,7 @@ def get_local_world_size() -> int:
def get_current_accelerator(check_available: bool = True) -> torch.device: def get_current_accelerator(check_available: bool = True) -> torch.device:
"""Get current accelerator. """Get current accelerator.
Note: this api requires torch>=2.7.0, 2.6 or lower will get an AttributeError or RuntimeError Note: this api requires torch>=2.7.0, otherwise it will raise an AttributeError or RuntimeError
""" """
if not hasattr(torch, "accelerator"): if not hasattr(torch, "accelerator"):
raise RuntimeError("torch.accelerator is not available, please upgrade torch to 2.7.0 or higher.") raise RuntimeError("torch.accelerator is not available, please upgrade torch to 2.7.0 or higher.")
@@ -123,7 +123,7 @@ def all_reduce(data: TensorLike, op: ReduceOp = ReduceOp.MEAN, group: Optional["
is_tensor = isinstance(data, torch.Tensor) is_tensor = isinstance(data, torch.Tensor)
if is_ndarray: if is_ndarray:
data = torch.from_numpy(data) data = torch.from_numpy(data).to(device=device, dtype=torch.float)
elif not is_tensor: elif not is_tensor:
data = torch.tensor(data, dtype=torch.float, device=device) data = torch.tensor(data, dtype=torch.float, device=device)
@@ -140,7 +140,7 @@ def all_reduce(data: TensorLike, op: ReduceOp = ReduceOp.MEAN, group: Optional["
if is_tensor: if is_tensor:
return data return data
elif is_ndarray: elif is_ndarray:
return data.numpy() return data.cpu().numpy()
elif data.numel() == 1: elif data.numel() == 1:
return data.item() return data.item()
else: else:

View File

@@ -1,4 +1,7 @@
# Copyright 2025 the LlamaFactory team. # Copyright 2025 Bytedance Ltd. and the LlamaFactory team.
#
# This code is inspired by the Bytedance's VeOmni library.
# https://github.com/ByteDance-Seed/VeOmni/blob/v0.1.4/veomni/distributed/parallel_state.py
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@@ -13,41 +16,91 @@
# limitations under the License. # limitations under the License.
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Optional from enum import Enum
from typing import TYPE_CHECKING, Any, Optional
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from ..utils.types import TensorLike from ..utils.types import Tensor, TensorLike
from .helper import ReduceOp, all_reduce, get_current_accelerator, get_rank, get_world_size, is_distributed from .helper import (
ReduceOp,
all_gather,
all_reduce,
get_current_accelerator,
get_local_rank,
get_local_world_size,
get_rank,
get_world_size,
is_distributed,
)
if TYPE_CHECKING:
from torch.distributed import ProcessGroup
class Dim(str, Enum):
"""Dimension names."""
MP_REPLICATE = "mp_replicate"
MP_SHARD = "mp_shard"
DP = "dp"
CP = "cp"
@dataclass @dataclass
class DistributedStrategy: class DistributedStrategy:
"""Distributed strategy.""" """Distributed strategy."""
mp_replicate_size: int = 1
"""Model parallel replicate size, default to 1."""
mp_shard_size: Optional[int] = None
"""Model parallel shard size, default to world_size // mp_replicate_size."""
dp_size: Optional[int] = None dp_size: Optional[int] = None
tp_size: int = 1 """Data parallel size, default to world_size // cp_size."""
cp_size: int = 1
"""Context parallel size, default to 1."""
def __post_init__(self) -> None: def __post_init__(self) -> None:
if not is_distributed():
self.mp_shard_size = 1
elif self.mp_shard_size is None:
self.mp_shard_size = get_world_size() // self.mp_replicate_size
elif self.mp_replicate_size * self.mp_shard_size != get_world_size():
raise ValueError(
f"mp_replicate_size * mp_shard_size must equal to world_size, "
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {get_world_size()}."
)
if not is_distributed(): if not is_distributed():
self.dp_size = 1 self.dp_size = 1
elif self.dp_size is None: elif self.dp_size is None:
self.dp_size = get_world_size() // self.tp_size self.dp_size = get_world_size() // self.cp_size
elif self.dp_size * self.tp_size != get_world_size(): elif self.dp_size * self.cp_size != get_world_size():
raise ValueError( raise ValueError(
f"dp_size * tp_size must equal to world_size, " f"dp_size * cp_size must equal to world_size, "
f"got {self.dp_size} * {self.tp_size} != {get_world_size()}." f"got {self.dp_size} * {self.cp_size} != {get_world_size()}."
) )
@property @property
def mesh_shape(self) -> tuple[int, int]: def model_mesh_shape(self) -> tuple[int, int]:
"""Mesh shape.""" """Model parallel mesh shape."""
return (self.dp_size, self.tp_size) return (self.mp_replicate_size, self.mp_shard_size)
@property @property
def mesh_dim_names(self) -> tuple[str, str]: def model_mesh_dim_names(self) -> tuple[str, str]:
"""Mesh dimension names.""" """Model parallel mesh dimension names."""
return ("dp", "tp") return (Dim.MP_REPLICATE.value, Dim.MP_SHARD.value)
@property
def data_mesh_shape(self) -> tuple[int, int]:
"""Data parallel mesh shape."""
return (self.dp_size, self.cp_size)
@property
def data_mesh_dim_names(self) -> tuple[str, str]:
"""Data parallel mesh dimension names."""
return (Dim.DP.value, Dim.CP.value)
class DistributedInterface: class DistributedInterface:
@@ -55,15 +108,18 @@ class DistributedInterface:
_instance: Optional["DistributedInterface"] = None _instance: Optional["DistributedInterface"] = None
_initialized: bool = False _initialized: bool = False
_is_distributed = is_distributed()
_rank = get_rank()
_world_size = get_world_size()
_local_rank = get_local_rank()
_local_world_size = get_local_world_size()
is_distributed = is_distributed() strategy: Optional[DistributedStrategy] = None
"""Check if distributed environment is available.""" """Distributed strategy."""
rank = get_rank() model_device_mesh: Optional[DeviceMesh] = None
"""Global rank.""" """Model parallel device mesh."""
world_size = get_world_size() data_device_mesh: Optional[DeviceMesh] = None
"""Global world size.""" """Data parallel device mesh."""
device_mesh: Optional[DeviceMesh] = None
"""Device mesh."""
current_accelerator = get_current_accelerator() current_accelerator = get_current_accelerator()
"""Current accelerator.""" """Current accelerator."""
@@ -79,44 +135,89 @@ class DistributedInterface:
return return
self.strategy = strategy self.strategy = strategy
if self.is_distributed: if self._is_distributed:
self.device_mesh = init_device_mesh( self.model_device_mesh = init_device_mesh(
device_type=self.current_accelerator.type, device_type=self.current_accelerator.type,
mesh_shape=strategy.mesh_shape, mesh_shape=strategy.model_mesh_shape,
mesh_dim_names=strategy.mesh_dim_names, mesh_dim_names=strategy.model_mesh_dim_names,
)
self.data_device_mesh = init_device_mesh(
device_type=self.current_accelerator.type,
mesh_shape=strategy.data_mesh_shape,
mesh_dim_names=strategy.data_mesh_dim_names,
) )
else: else:
self.device_mesh = None self.model_device_mesh = None
self.data_device_mesh = None
self._initialized = True self._initialized = True
def __str__(self) -> str: def __str__(self) -> str:
return ( return (
f"DistributedInterface(strategy={self.strategy}), is_distributed={self.is_distributed}, " f"DistributedInterface(strategy={self.strategy}), is_distributed={self._is_distributed}, "
f"rank={self.rank}, world_size={self.world_size}, " f"current_accelerator={self.current_accelerator}, rank={self._rank}, world_size={self._world_size}, "
f"device_mesh={self.device_mesh}, current_accelerator={self.current_accelerator}" f"model_device_mesh={self.model_device_mesh}, data_device_mesh={self.data_device_mesh}"
) )
def dp_rank(self) -> int: @classmethod
"""Data parallel rank.""" def get_device_mesh(cls, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
if self.device_mesh is None: """Get device mesh for specified dimension."""
if dim is None:
raise ValueError("dim must be specified.")
elif cls.model_device_mesh is None:
return None
elif dim in cls.strategy.data_mesh_dim_names:
return cls.data_device_mesh[dim.value]
else:
return cls.model_device_mesh[dim.value]
@classmethod
def get_group(cls, dim: Optional[Dim] = None) -> Optional["ProcessGroup"]:
"""Get process group for specified dimension."""
if cls.model_device_mesh is None or dim is None:
return None
else:
return cls.get_device_mesh(dim).get_group()
@classmethod
def get_rank(cls, dim: Optional[Dim] = None) -> int:
"""Get parallel rank for specified dimension."""
if cls.model_device_mesh is None:
return 0 return 0
elif dim is None:
return cls._rank
else:
return cls.get_device_mesh(dim).get_local_rank()
return self.device_mesh["dp"].get_rank() @classmethod
def get_world_size(cls, dim: Optional[Dim] = None) -> int:
def dp_size(self) -> int: """Get parallel size for specified dimension."""
"""Data parallel size.""" if cls.model_device_mesh is None:
if self.device_mesh is None:
return 1 return 1
elif dim is None:
return cls._world_size
else:
return cls.get_device_mesh(dim).size()
return self.device_mesh["dp"].size() @classmethod
def get_local_rank(cls) -> int:
"""Get parallel local rank."""
return cls._local_rank
def all_reduce_over_dp(self, data: TensorLike, op: ReduceOp = ReduceOp.MEAN) -> TensorLike: @classmethod
"""All reduce tensor.""" def get_local_world_size(cls) -> int:
if self.device_mesh is None: """Get parallel local world size."""
return data return cls._local_world_size
return all_reduce(data, op, self.device_mesh["dp"].get_group()) @classmethod
def all_gather(cls, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
"""Gather tensor across specified parallel group."""
return all_gather(data, cls.get_group(dim)) if cls.model_device_mesh is not None else data
@classmethod
def all_reduce(cls, data: TensorLike, op: ReduceOp = ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP) -> TensorLike:
"""Reduce tensor across specified parallel group."""
return all_reduce(data, op, cls.get_group(dim)) if cls.model_device_mesh is not None else data
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -20,5 +20,7 @@ from llamafactory.v1.accelerator.interface import DistributedInterface, Distribu
def test_distributed_interface(): def test_distributed_interface():
DistributedInterface(DistributedStrategy()) DistributedInterface(DistributedStrategy())
assert DistributedInterface.rank == int(os.getenv("RANK", "0")) assert DistributedInterface.get_rank() == int(os.getenv("RANK", "0"))
assert DistributedInterface.world_size == int(os.getenv("WORLD_SIZE", "1")) assert DistributedInterface.get_world_size() == int(os.getenv("WORLD_SIZE", "1"))
assert DistributedInterface.get_local_rank() == int(os.getenv("LOCAL_RANK", "0"))
assert DistributedInterface.get_local_world_size() == int(os.getenv("LOCAL_WORLD_SIZE", "1"))