[v1] add v1 launcher (#9236)

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Yaowei Zheng 2025-10-07 22:34:48 +08:00 committed by GitHub
parent 95b7188090
commit 10146029ba
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
26 changed files with 661 additions and 452 deletions

4
.gitignore vendored
View File

@ -169,8 +169,8 @@ uv.lock
hf_cache/
ms_cache/
om_cache/
cache/
config/
llamaboard_cache/
llamaboard_config/
saves/
output/
wandb/

View File

@ -1,82 +0,0 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "BELLE multiturn chat dataset."
_CITATION = """\
@article{belle2023exploring,
title={Exploring the Impact of Instruction Data Scaling on Large Language Models},
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
journal={arXiv preprint arXiv:2303.14742},
year={2023}
}
"""
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M"
_LICENSE = "gpl-3.0"
_URL = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json"
class BelleMultiturn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self):
features = datasets.Features(
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download(_URL)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
def _generate_examples(self, filepath: str):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
conversations = []
prompt = data["instruction"].strip()
response = data["output"].strip()
assist_idx = prompt.rfind("Assistant:")
human_idx = prompt.rfind("Human:")
query = prompt[human_idx + 6 : assist_idx].strip()
prompt = prompt[:human_idx].strip()
conversations.insert(0, {"from": "gpt", "value": response})
conversations.insert(0, {"from": "human", "value": query})
while prompt.rfind("Assistant:") != -1:
assist_idx = prompt.rfind("Assistant:")
human_idx = prompt.rfind("Human:")
if human_idx != -1:
old_query = prompt[human_idx + 6 : assist_idx].strip()
old_resp = prompt[assist_idx + 10 :].strip()
conversations.insert(0, {"from": "gpt", "value": old_resp})
conversations.insert(0, {"from": "human", "value": old_query})
else:
break
prompt = prompt[:human_idx].strip()
yield key, {"conversations": conversations}

View File

@ -143,14 +143,6 @@
"hf_hub_url": "BelleGroup/school_math_0.25M",
"ms_hub_url": "AI-ModelScope/school_math_0.25M"
},
"belle_multiturn": {
"script_url": "belle_multiturn",
"formatting": "sharegpt"
},
"ultra_chat": {
"script_url": "ultra_chat",
"formatting": "sharegpt"
},
"open_platypus": {
"hf_hub_url": "garage-bAInd/Open-Platypus",
"ms_hub_url": "AI-ModelScope/Open-Platypus"
@ -583,16 +575,6 @@
"system": "system"
}
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected",
"history": "history"
}
},
"nectar_rm": {
"hf_hub_url": "AstraMindAI/RLAIF-Nectar",
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",

View File

@ -1,98 +0,0 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
_CITATION = ""
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/Anthropic/hh-rlhf"
_LICENSE = "mit"
_URL = f"{_HF_ENDPOINT}/datasets/Anthropic/hh-rlhf/resolve/main/"
_URLS = {
"train": [
_URL + "harmless-base/train.jsonl.gz",
_URL + "helpful-base/train.jsonl.gz",
_URL + "helpful-online/train.jsonl.gz",
_URL + "helpful-rejection-sampled/train.jsonl.gz",
],
"test": [
_URL + "harmless-base/test.jsonl.gz",
_URL + "helpful-base/test.jsonl.gz",
_URL + "helpful-online/test.jsonl.gz",
_URL + "helpful-rejection-sampled/test.jsonl.gz",
],
}
class HhRlhfEn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"chosen": datasets.Value("string"),
"rejected": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_path["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": file_path["test"]}),
]
def _generate_examples(self, filepaths: list[str]):
key = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for row in f:
data = json.loads(row)
chosen = data["chosen"]
rejected = data["rejected"]
assist_idx = rejected.rfind("\n\nAssistant: ")
r_reject = rejected[assist_idx + 13 :].strip()
assist_idx = chosen.rfind("\n\nAssistant: ")
r_accept = chosen[assist_idx + 13 :].strip()
human_idx = chosen.rfind("\n\nHuman: ")
query = chosen[human_idx + 9 : assist_idx].strip()
prompt = chosen[:human_idx]
history = []
while prompt.rfind("\n\nAssistant: ") != -1:
assist_idx = prompt.rfind("\n\nAssistant: ")
human_idx = prompt.rfind("\n\nHuman: ")
if human_idx != -1:
old_query = prompt[human_idx + 9 : assist_idx].strip()
old_resp = prompt[assist_idx + 13 :].strip()
history.insert(0, (old_query, old_resp))
else:
break
prompt = prompt[:human_idx]
yield key, {"instruction": query, "chosen": r_accept, "rejected": r_reject, "history": history}
key += 1

View File

@ -1,74 +0,0 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
_CITATION = """\
@misc{UltraChat,
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and others},
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/thunlp/ultrachat}},
}
"""
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/stingning/ultrachat"
_LICENSE = "cc-by-nc-4.0"
_BASE_DATA_URL = f"{_HF_ENDPOINT}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl"
class UltraChat(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self):
features = datasets.Features(
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})]
def _generate_examples(self, filepaths: list[str]):
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for row in f:
try:
data = json.loads(row)
except Exception:
continue
key: int = data["id"]
content: list[str] = data["data"]
if len(content) % 2 == 1:
content.pop(-1)
if len(content) < 2:
continue
conversations = [
{"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content))
]
yield key, {"conversations": conversations}

8
data/v1_sft_demo.yaml Normal file
View File

@ -0,0 +1,8 @@
identity:
file_name: identity.json
converter: alpaca
alpaca_en_demo:
file_name: alpaca_en_demo.json
dataset_dir: ~/data
converter: alpaca
num_samples: 500

View File

@ -12,145 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import subprocess
import sys
from copy import deepcopy
from functools import partial
USAGE = (
"-" * 70
+ "\n"
+ "| Usage: |\n"
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
+ "| llamafactory-cli train -h: train models |\n"
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
+ "| llamafactory-cli env: show environment info |\n"
+ "| llamafactory-cli version: show version info |\n"
+ "| Hint: You can use `lmf` as a shortcut for `llamafactory-cli`. |\n"
+ "-" * 70
)
def main():
from .extras import logging
from .extras.env import VERSION, print_env
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_ray
from .extras.misc import is_env_enabled
if is_env_enabled("USE_V1"):
from .v1 import launcher
else:
from . import launcher
logger = logging.get_logger(__name__)
WELCOME = (
"-" * 58
+ "\n"
+ f"| Welcome to LLaMA Factory, version {VERSION}"
+ " " * (21 - len(VERSION))
+ "|\n|"
+ " " * 56
+ "|\n"
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
+ "-" * 58
)
COMMAND_MAP = {
"api": launcher.run_api,
"chat": launcher.run_chat,
"env": print_env,
"eval": launcher.run_eval,
"export": launcher.export_model,
"train": launcher.run_exp,
"webchat": launcher.run_web_demo,
"webui": launcher.run_web_ui,
"version": partial(print, WELCOME),
"help": partial(print, USAGE),
}
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
# launch distributed training
nnodes = os.getenv("NNODES", "1")
node_rank = os.getenv("NODE_RANK", "0")
nproc_per_node = os.getenv("NPROC_PER_NODE", str(get_device_count()))
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
master_port = os.getenv("MASTER_PORT", str(find_available_port()))
logger.info_rank0(f"Initializing {nproc_per_node} distributed tasks at: {master_addr}:{master_port}")
if int(nnodes) > 1:
logger.info_rank0(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
# elastic launch support
max_restarts = os.getenv("MAX_RESTARTS", "0")
rdzv_id = os.getenv("RDZV_ID")
min_nnodes = os.getenv("MIN_NNODES")
max_nnodes = os.getenv("MAX_NNODES")
env = deepcopy(os.environ)
if is_env_enabled("OPTIM_TORCH", "1"):
# optimize DDP, see https://zhuanlan.zhihu.com/p/671834539
env["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
env["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
if rdzv_id is not None:
# launch elastic job with fault tolerant support when possible
# see also https://docs.pytorch.org/docs/stable/elastic/train_script.html
rdzv_nnodes = nnodes
# elastic number of nodes if MIN_NNODES and MAX_NNODES are set
if min_nnodes is not None and max_nnodes is not None:
rdzv_nnodes = f"{min_nnodes}:{max_nnodes}"
process = subprocess.run(
(
"torchrun --nnodes {rdzv_nnodes} --nproc-per-node {nproc_per_node} "
"--rdzv-id {rdzv_id} --rdzv-backend c10d --rdzv-endpoint {master_addr}:{master_port} "
"--max-restarts {max_restarts} {file_name} {args}"
)
.format(
rdzv_nnodes=rdzv_nnodes,
nproc_per_node=nproc_per_node,
rdzv_id=rdzv_id,
master_addr=master_addr,
master_port=master_port,
max_restarts=max_restarts,
file_name=launcher.__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
else:
# NOTE: DO NOT USE shell=True to avoid security risk
process = subprocess.run(
(
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
)
.format(
nnodes=nnodes,
node_rank=node_rank,
nproc_per_node=nproc_per_node,
master_addr=master_addr,
master_port=master_port,
file_name=launcher.__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
sys.exit(process.returncode)
elif command in COMMAND_MAP:
COMMAND_MAP[command]()
else:
print(f"Unknown command: {command}.\n{USAGE}")
launcher.launch()
if __name__ == "__main__":

View File

@ -16,6 +16,9 @@
# limitations under the License.
from collections import OrderedDict
VERSION = "0.9.4.dev0"
@ -28,20 +31,20 @@ def print_env() -> None:
import peft
import torch
import transformers
import trl
from transformers.utils import is_torch_cuda_available, is_torch_npu_available
info = {
"`llamafactory` version": VERSION,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"PyTorch version": torch.__version__,
"Transformers version": transformers.__version__,
"Datasets version": datasets.__version__,
"Accelerate version": accelerate.__version__,
"PEFT version": peft.__version__,
"TRL version": trl.__version__,
}
info = OrderedDict(
{
"`llamafactory` version": VERSION,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"PyTorch version": torch.__version__,
"Transformers version": transformers.__version__,
"Datasets version": datasets.__version__,
"Accelerate version": accelerate.__version__,
"PEFT version": peft.__version__,
}
)
if is_torch_cuda_available():
info["PyTorch version"] += " (GPU)"
@ -54,6 +57,13 @@ def print_env() -> None:
info["NPU type"] = torch.npu.get_device_name()
info["CANN version"] = torch.version.cann
try:
import trl # type: ignore
info["TRL version"] = trl.__version__
except Exception:
pass
try:
import deepspeed # type: ignore

View File

@ -12,46 +12,169 @@
# See the License for the specific language governing permissions and
# limitations under the License.
def run_api():
from llamafactory.api.app import run_api as _run_api
_run_api()
import os
import subprocess
import sys
from copy import deepcopy
def run_chat():
from llamafactory.chat.chat_model import run_chat as _run_chat
return _run_chat()
USAGE = (
"-" * 70
+ "\n"
+ "| Usage: |\n"
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
+ "| llamafactory-cli train -h: train models |\n"
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
+ "| llamafactory-cli env: show environment info |\n"
+ "| llamafactory-cli version: show version info |\n"
+ "| Hint: You can use `lmf` as a shortcut for `llamafactory-cli`. |\n"
+ "-" * 70
)
def run_eval():
raise NotImplementedError("Evaluation will be deprecated in the future.")
def launch():
from .extras import logging
from .extras.env import VERSION, print_env
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_ray
logger = logging.get_logger(__name__)
WELCOME = (
"-" * 58
+ "\n"
+ f"| Welcome to LLaMA Factory, version {VERSION}"
+ " " * (21 - len(VERSION))
+ "|\n|"
+ " " * 56
+ "|\n"
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
+ "-" * 58
)
def export_model():
from llamafactory.train.tuner import export_model as _export_model
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
# launch distributed training
nnodes = os.getenv("NNODES", "1")
node_rank = os.getenv("NODE_RANK", "0")
nproc_per_node = os.getenv("NPROC_PER_NODE", str(get_device_count()))
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
master_port = os.getenv("MASTER_PORT", str(find_available_port()))
logger.info_rank0(f"Initializing {nproc_per_node} distributed tasks at: {master_addr}:{master_port}")
if int(nnodes) > 1:
logger.info_rank0(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
return _export_model()
# elastic launch support
max_restarts = os.getenv("MAX_RESTARTS", "0")
rdzv_id = os.getenv("RDZV_ID")
min_nnodes = os.getenv("MIN_NNODES")
max_nnodes = os.getenv("MAX_NNODES")
env = deepcopy(os.environ)
if is_env_enabled("OPTIM_TORCH", "1"):
# optimize DDP, see https://zhuanlan.zhihu.com/p/671834539
env["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
env["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
def run_exp():
from llamafactory.train.tuner import run_exp as _run_exp
if rdzv_id is not None:
# launch elastic job with fault tolerant support when possible
# see also https://docs.pytorch.org/docs/stable/elastic/train_script.html
rdzv_nnodes = nnodes
# elastic number of nodes if MIN_NNODES and MAX_NNODES are set
if min_nnodes is not None and max_nnodes is not None:
rdzv_nnodes = f"{min_nnodes}:{max_nnodes}"
return _run_exp() # use absolute import
process = subprocess.run(
(
"torchrun --nnodes {rdzv_nnodes} --nproc-per-node {nproc_per_node} "
"--rdzv-id {rdzv_id} --rdzv-backend c10d --rdzv-endpoint {master_addr}:{master_port} "
"--max-restarts {max_restarts} {file_name} {args}"
)
.format(
rdzv_nnodes=rdzv_nnodes,
nproc_per_node=nproc_per_node,
rdzv_id=rdzv_id,
master_addr=master_addr,
master_port=master_port,
max_restarts=max_restarts,
file_name=__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
else:
# NOTE: DO NOT USE shell=True to avoid security risk
process = subprocess.run(
(
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
)
.format(
nnodes=nnodes,
node_rank=node_rank,
nproc_per_node=nproc_per_node,
master_addr=master_addr,
master_port=master_port,
file_name=__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
sys.exit(process.returncode)
def run_web_demo():
from llamafactory.webui.interface import run_web_demo as _run_web_demo
elif command == "api":
from .api.app import run_api
return _run_web_demo()
run_api()
elif command == "chat":
from .chat.chat_model import run_chat
def run_web_ui():
from llamafactory.webui.interface import run_web_ui as _run_web_ui
run_chat()
return _run_web_ui()
elif command == "eval":
raise NotImplementedError("Evaluation will be deprecated in the future.")
elif command == "export":
from .train.tuner import export_model
export_model()
elif command == "train":
from .train.tuner import run_exp
run_exp()
elif command == "webchat":
from .webui.interface import run_web_demo
run_web_demo()
elif command == "webui":
from .webui.interface import run_web_ui
run_web_ui()
elif command == "env":
print_env()
elif command == "version":
print(WELCOME)
elif command == "help":
print(USAGE)
else:
print(f"Unknown command: {command}.\n{USAGE}")
if __name__ == "__main__":
from llamafactory.train.tuner import run_exp # use absolute import
run_exp()

View File

@ -0,0 +1,33 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class DataArguments:
dataset: Optional[str] = field(
default=None,
metadata={"help": "Path to the dataset."},
)
dataset_dir: str = field(
default="data",
metadata={"help": "Path to the folder containing the datasets."},
)
cutoff_len: int = field(
default=2048,
metadata={"help": "Cutoff length for the dataset."},
)

View File

@ -0,0 +1,27 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class ModelArguments:
model: str = field(
metadata={"help": "Path to the model or model identifier from Hugging Face."},
)
trust_remote_code: bool = field(
default=False,
metadata={"help": "Trust remote code from Hugging Face."},
)

View File

@ -0,0 +1,63 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
from pathlib import Path
from typing import Any, Optional, Union
from omegaconf import OmegaConf
from transformers import HfArgumentParser
from ...extras.misc import is_env_enabled
from .data_args import DataArguments
from .model_args import ModelArguments
from .sample_args import SampleArguments
from .training_args import TrainingArguments
def get_args(
args: Optional[Union[dict[str, Any], list[str]]] = None,
) -> tuple[DataArguments, ModelArguments, TrainingArguments, SampleArguments]:
"""Parse arguments from command line or config file."""
parser = HfArgumentParser([DataArguments, ModelArguments, TrainingArguments, SampleArguments])
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_KEYS")
if args is None:
if len(sys.argv) > 1 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
override_config = OmegaConf.from_cli(sys.argv[2:])
dict_config = OmegaConf.load(Path(sys.argv[1]).absolute())
args = OmegaConf.to_container(OmegaConf.merge(dict_config, override_config))
elif len(sys.argv) > 1 and sys.argv[1].endswith(".json"):
override_config = OmegaConf.from_cli(sys.argv[2:])
dict_config = OmegaConf.create(json.load(Path(sys.argv[1]).absolute()))
args = OmegaConf.to_container(OmegaConf.merge(dict_config, override_config))
else: # list of strings
args = sys.argv[1:]
if isinstance(args, dict):
(*parsed_args,) = parser.parse_dict(args, allow_extra_keys=allow_extra_keys)
else:
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args, return_remaining_strings=True)
if unknown_args and not allow_extra_keys:
print(parser.format_help())
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
return tuple(parsed_args)
if __name__ == "__main__":
print(get_args())

View File

@ -0,0 +1,24 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class SampleArguments:
max_new_tokens: int = field(
default=128,
metadata={"help": "Maximum number of new tokens to generate."},
)

View File

@ -0,0 +1,40 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class TrainingArguments:
output_dir: str = field(
default="",
metadata={"help": "Path to the output directory."},
)
micro_batch_size: int = field(
default=1,
metadata={"help": "Micro batch size for training."},
)
global_batch_size: int = field(
default=1,
metadata={"help": "Global batch size for training."},
)
learning_rate: float = field(
default=1e-4,
metadata={"help": "Learning rate for training."},
)
bf16: bool = field(
default=False,
metadata={"help": "Use bf16 for training."},
)

View File

@ -0,0 +1,35 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..config.training_args import TrainingArguments
from ..extras.types import DataLoader, Model, Processor
class BaseTrainer:
def __init__(
self,
args: TrainingArguments,
model: Model,
processor: Processor,
data_loader: DataLoader,
) -> None:
self.args = args
self.model = model
self.processor = processor
self.data_loader = data_loader
self.optimizer = None
self.lr_scheduler = None
def fit(self) -> None:
pass

View File

@ -0,0 +1,20 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..config.sample_args import SampleArguments
class ChatSampler:
def __init__(self, sample_args: SampleArguments) -> None:
self.args = sample_args

View File

@ -0,0 +1,75 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from ..config.data_args import DataArguments
from ..extras.types import DataLoader, Dataset, Processor
class DataCollator:
def __init__(self, processor: Processor) -> None:
self.processor = processor
class DatasetPathMixin:
args: DataArguments
def _abspath(self, path: str) -> str:
return os.path.abspath(os.path.expanduser(os.path.join(self.args.dataset_dir, path)))
def _exists(self, path: str) -> bool:
return os.path.exists(self._abspath(path))
def _isfile(self, path: str) -> bool:
return os.path.isfile(self._abspath(path))
class DataEngine(DatasetPathMixin):
def __init__(self, data_args: DataArguments) -> None:
self.args = data_args
self.datasets: dict[str, Dataset] = {}
dataset_info = self.get_dataset_info()
self.load_dataset(dataset_info)
def get_dataset_info(self) -> dict:
"""Get dataset info from dataset path.
Returns:
dict: Dataset info.
"""
if self.args.dataset.endswith(".yaml") and self._isfile(self.args.dataset): # local file
return OmegaConf.load(self._abspath(self.args.dataset))
elif self.args.dataset.endswith(".yaml"): # hf hub uri
repo_id, filename = os.path.split(self.args.dataset)
filepath = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset")
return OmegaConf.load(filepath)
elif self._exists(self.args.dataset): # local file(s)
return {"default": {"file_name": self.args.dataset}}
else: # hf hub dataset
return {"default": {"hf_hub_url": self.args.dataset}}
def load_dataset(self, dataset_info: dict) -> None:
for key, value in dataset_info.items():
if "hf_hub_url" in value:
dataset_info[key] = load_dataset(value["hf_hub_url"])
elif "file_name" in value:
dataset_info[key] = load_dataset(value["file_name"])
def get_data_loader(self, processor: Processor) -> DataLoader:
pass

View File

@ -0,0 +1,27 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..config.model_args import ModelArguments
from ..extras.types import Model, Processor
class ModelEngine:
def __init__(self, model_args: ModelArguments) -> None:
self.args = model_args
def get_model(self) -> Model:
pass
def get_processor(self) -> Processor:
pass

View File

@ -0,0 +1,32 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Union
if TYPE_CHECKING:
from datasets import Dataset as HFDataset
from datasets import IterableDataset
from torch.utils.data import DataLoader as TorchDataLoader
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
Dataset = Union[HFDataset, IterableDataset]
DataLoader = TorchDataLoader
Model = PreTrainedModel
Processor = Union[PreTrainedTokenizer, ProcessorMixin]
else:
Dataset = None
DataLoader = None
Model = None
Processor = None

View File

@ -12,22 +12,55 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
def run_train():
raise NotImplementedError("Please use `llamafactory-cli sft` or `llamafactory-cli rm`.")
from ..extras.env import VERSION, print_env
def run_chat():
from llamafactory.v1.core.chat_sampler import Sampler
Sampler().cli()
USAGE = (
"-" * 70
+ "\n"
+ "| Usage: |\n"
+ "| llamafactory-cli sft -h: train models |\n"
+ "| llamafactory-cli version: show version info |\n"
+ "| Hint: You can use `lmf` as a shortcut for `llamafactory-cli`. |\n"
+ "-" * 70
)
def run_sft():
from llamafactory.v1.train.sft import SFTTrainer
WELCOME = (
"-" * 58
+ "\n"
+ f"| Welcome to LLaMA Factory, version {VERSION}"
+ " " * (21 - len(VERSION))
+ "|\n|"
+ " " * 56
+ "|\n"
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
+ "-" * 58
)
SFTTrainer().run()
def launch():
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
if command == "sft":
from .trainers.sft_trainer import run_sft
run_sft()
elif command == "env":
print_env()
elif command == "version":
print(WELCOME)
elif command == "help":
print(USAGE)
else:
print(f"Unknown command: {command}.\n{USAGE}")
if __name__ == "__main__":
run_train()
pass

View File

@ -0,0 +1,26 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class Template:
user_template: str
assistant_template: str
system_template: str
def render_message(self, message: "dict[str, str]") -> str:
return self.user_template.format(**message)

View File

@ -0,0 +1,34 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..config.parser import get_args
from ..core.base_trainer import BaseTrainer
from ..core.data_engine import DataEngine
from ..core.model_engine import ModelEngine
class SFTTrainer(BaseTrainer):
pass
def run_sft():
model_args, data_args, training_args, _ = get_args()
model_engine = ModelEngine(model_args)
data_engine = DataEngine(data_args)
model = model_engine.get_model()
processor = model_engine.get_processor()
data_loader = data_engine.get_data_loader(processor)
trainer = SFTTrainer(training_args, model, processor, data_loader)
trainer.fit()

View File

@ -36,8 +36,8 @@ from ..extras.misc import use_modelscope, use_openmind
logger = logging.get_logger(__name__)
DEFAULT_CACHE_DIR = "cache"
DEFAULT_CONFIG_DIR = "config"
DEFAULT_CACHE_DIR = "llamaboard_cache"
DEFAULT_CONFIG_DIR = "llamaboard_config"
DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user_config.yaml"