Former-commit-id: 11c1e1e1570d3712109dd4dce831674a98841bd5
This commit is contained in:
hiyouga 2023-11-07 19:42:01 +08:00
parent ed584b9f52
commit 100dc4c458
5 changed files with 21 additions and 17 deletions

View File

@ -100,11 +100,13 @@ def get_train_args(
if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type != "lora":
raise ValueError("RM and PPO stages can only be performed with the LoRA method.")
if finetuning_args.stage in ["rm", "ppo"] and training_args.resume_from_checkpoint is not None:
raise ValueError("RM and PPO stages do not support `resume_from_checkpoint`.")
if finetuning_args.stage in ["rm", "ppo"]:
if finetuning_args.finetuning_type != "lora":
raise ValueError("RM and PPO stages can only be performed with the LoRA method.")
if training_args.resume_from_checkpoint is not None:
raise ValueError("RM and PPO stages do not support `resume_from_checkpoint`.")
if training_args.load_best_model_at_end:
raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")
if finetuning_args.stage == "ppo" and not training_args.do_train:
raise ValueError("PPO training does not support evaluation.")

View File

@ -33,6 +33,12 @@ def run_dpo(
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
# Create reference model
ref_model = None
if not isinstance(model, PeftModel):
ref_model, _ = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft")
# Update arguments
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict)
@ -41,7 +47,7 @@ def run_dpo(
trainer = CustomDPOTrainer(
beta=finetuning_args.dpo_beta,
model=model,
ref_model=deepcopy(model) if not isinstance(model, PeftModel) else None,
ref_model=ref_model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,

View File

@ -190,8 +190,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
if len(response_index) == 0:
response_length = 1 # allow empty response
elif self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
response_length = response_index[-1].item() + 2 # save the EOS token
else:
response_length = response_index[-1].item() + 1
@ -221,7 +219,8 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
rewards = []
for i in range(values.size(0)):
end_index = batch["attention_mask"][i].nonzero()[-1].item() # use the score on the EOS token
end_indexes = (batch["input_ids"][i] != self.tokenizer.eos_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
replace_model(unwrapped_model, target="default")

View File

@ -45,9 +45,6 @@ class PairwiseTrainer(Trainer):
# Split the inputs and rewards into two parts, chosen and rejected
batch_size = inputs["input_ids"].size(0) // 2
chosen_input_ids, rejected_input_ids = inputs["input_ids"][:batch_size], inputs["input_ids"][batch_size:]
chosen_attn_mask, rejected_attn_mask = (
inputs["attention_mask"][:batch_size], inputs["attention_mask"][batch_size:]
)
chosen_rewards, rejected_rewards = values[:batch_size], values[batch_size:]
chosen_scores, rejected_scores = [], []
@ -55,8 +52,8 @@ class PairwiseTrainer(Trainer):
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/reward_model.py
loss = 0
for i in range(batch_size):
chosen_length = chosen_attn_mask[i].nonzero()[-1] + 1
rejected_length = rejected_attn_mask[i].nonzero()[-1] + 1
chosen_length = (chosen_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
rejected_length = (rejected_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
check_divergence = (chosen_input_ids[i] != rejected_input_ids[i]).nonzero()
if len(check_divergence) == 0:
@ -69,7 +66,7 @@ class PairwiseTrainer(Trainer):
assert div_index > 0
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
if return_outputs: # use the score on the EOS token for inference
if return_outputs: # use the score on the last token except pad token for inference
chosen_scores.append(chosen_rewards[i, chosen_length-1])
rejected_scores.append(rejected_rewards[i, rejected_length-1])
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
@ -95,7 +92,6 @@ class PairwiseTrainer(Trainer):
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
chosen_scores, rejected_scores = predict_results.predictions
with open(output_prediction_file, "w", encoding="utf-8") as writer:

View File

@ -28,6 +28,7 @@ def run_rm(
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=4)
# Update arguments
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict)