Former-commit-id: 771cc802941cf1953b32e5102c817c6a3090b5ce
This commit is contained in:
fzc8578 2025-01-10 23:29:06 +08:00
parent bcbe37ff52
commit 0fb50f9c88
2 changed files with 41 additions and 17 deletions

View File

@ -19,8 +19,8 @@ from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence
import torch
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from transformers import DataCollatorForSeq2Seq
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER
@ -106,7 +106,9 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
batch_vidlens.append(len(videos))
batch_input_ids.append(feature["input_ids"])
if self.processor is not None and sum(batch_imglens) == 0: # avoid process hanging in zero3/fsdp case
if (
self.processor is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
): # avoid process hanging in zero3/fsdp case
fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
fake_messages = self.template.mm_plugin.process_messages(fake_messages, fake_images, [], self.processor)
@ -157,10 +159,14 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
if "image_bound" in features: # for minicpmv inputs
features["position_ids"] = [torch.arange(input_ids.size(0)).long() for input_ids in features["input_ids"]]
features["input_ids"] = pad(features["input_ids"],)
features["input_ids"] = pad(
features["input_ids"],
)
features["position_ids"] = pad(features["position_ids"])
features["labels"] = pad(features["labels"], padding_value=-100)
features["attention_mask"] = pad(features["attention_mask"],)
features["attention_mask"] = pad(
features["attention_mask"],
)
new_features = {}
new_features.update({"data": features})
new_features.update(features)

View File

@ -265,8 +265,19 @@ class CpmOPlugin(BasePlugin):
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
num_video_tokens = 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
mm_inputs = {}
if len(videos) != 0:
assert len(images) == 0, "Only support video and image sft seperately"
max_slice_nums = 2
use_image_id = False
mm_inputs = self._get_mm_inputs([], videos, processor)
else:
max_slice_nums = image_processor.max_slice_nums
use_image_id = image_processor.use_image_id
for message in messages:
content = message["content"]
@ -274,15 +285,21 @@ class CpmOPlugin(BasePlugin):
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
while VIDEO_PLACEHOLDER in content:
num_video_tokens += 1
content = content.replace(
VIDEO_PLACEHOLDER, "{{image}}" * len(mm_inputs["pixel_values"][num_video_tokens - 1]), 1
)
message["content"] = content.replace("{{image}}", "(<image>./</image>)")
if num_image_tokens > 0:
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, [], processor)
if mm_inputs:
pattern = "(<image>./</image>)"
images, image_sizes = mm_inputs["pixel_values"], mm_inputs["image_sizes"]
image_sizes = mm_inputs["image_sizes"]
image_index = 0
for index, message in enumerate(messages):
text = message["content"]
image_tags = re.findall(pattern, text)
@ -293,19 +310,21 @@ class CpmOPlugin(BasePlugin):
final_text
+ text_chunks[i]
+ image_processor.get_slice_image_placeholder(
image_sizes[image_index][i],
image_sizes[0][i],
i,
image_processor.max_slice_nums,
image_processor.use_image_id,
max_slice_nums,
use_image_id,
)
)
image_index += 1
final_text += text_chunks[-1]
messages[index]["content"] = final_text
if len(images) != num_image_tokens:
raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
if len(videos) != num_video_tokens:
raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
return messages
@override
@ -346,6 +365,8 @@ class CpmOPlugin(BasePlugin):
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 64),
)
video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
mm_inputs.update(video_inputs)
return mm_inputs
@ -380,12 +401,9 @@ class CpmOPlugin(BasePlugin):
]
)
image_bounds_list.append(image_bounds)
mm_inputs = self._get_mm_inputs(images, videos, processor, valid_image_nums_ls=valid_image_nums_ls)
mm_inputs.update(
{
"image_bound": image_bounds_list,
}
)
mm_inputs.update({"image_bound": image_bounds_list})
return mm_inputs