adapt to new mllm_param

Former-commit-id: 291384dea8a5c10f0358a30d124eaf85557548eb
This commit is contained in:
fzc8578 2025-01-11 00:16:34 +08:00
parent d5b18ee4a6
commit 08e8499a98
2 changed files with 9 additions and 19 deletions

View File

@ -37,10 +37,6 @@ if TYPE_CHECKING:
from .template import Template from .template import Template
def pad(seq, padding_value=0):
return pad_sequence(seq, batch_first=True, padding_value=padding_value)
def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor": def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
r""" r"""
Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len), Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
@ -159,14 +155,9 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
if "image_bound" in features: # for minicpmv inputs if "image_bound" in features: # for minicpmv inputs
features["position_ids"] = [torch.arange(input_ids.size(0)).long() for input_ids in features["input_ids"]] features["position_ids"] = [torch.arange(input_ids.size(0)).long() for input_ids in features["input_ids"]]
features["input_ids"] = pad( features["position_ids"] = pad_sequence(features["position_ids"], batch_first=True, padding_value=0)
features["input_ids"], features["labels"] = pad_sequence(features["labels"], batch_first=True, padding_value=-100)
) features["attention_mask"] = pad_sequence(features["attention_mask"], batch_first=True, padding_value=0)
features["position_ids"] = pad(features["position_ids"])
features["labels"] = pad(features["labels"], padding_value=-100)
features["attention_mask"] = pad(
features["attention_mask"],
)
new_features = {} new_features = {}
new_features.update({"data": features}) new_features.update({"data": features})
new_features.update(features) new_features.update(features)

View File

@ -171,13 +171,6 @@ def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "Finetuni
logger.info_rank0(f"Set language model not trainable: {language_model_keys}.") logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
forbidden_modules.update(language_model_keys) forbidden_modules.update(language_model_keys)
elif model_type == "minicpmv":
if finetuning_args.freeze_vision_tower:
forbidden_modules.add("vpm")
forbidden_modules.add("apm")
forbidden_modules.add("resampler")
forbidden_modules.add("tts")
return forbidden_modules return forbidden_modules
@ -257,6 +250,12 @@ _register_composite_model(
) )
_register_composite_model(
model_type="minicpmv",
vision_model_keys=["vpm", "apm", "resampler", "tts"],
)
_register_composite_model( _register_composite_model(
model_type="paligemma", model_type="paligemma",
) )