support vllm

Former-commit-id: 889f6e910e654d8ec3922c2185042d737ffbf1c3
This commit is contained in:
hiyouga
2024-03-07 20:26:31 +08:00
parent 9a69cadab3
commit 056d2d956a
32 changed files with 752 additions and 316 deletions

View File

@@ -1,4 +1,5 @@
from .base_engine import BaseEngine
from .chat_model import ChatModel
__all__ = ["ChatModel"]
__all__ = ["BaseEngine", "ChatModel"]

View File

@@ -0,0 +1,64 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer
from ..data import Template
from ..extras.packages import is_vllm_available
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
if is_vllm_available():
from vllm import AsyncLLMEngine
@dataclass
class Response:
response_text: str
response_length: int
prompt_length: int
finish_reason: Literal["stop", "length"]
class BaseEngine(ABC):
model: Union["PreTrainedModel", "AsyncLLMEngine"]
tokenizer: "PreTrainedTokenizer"
can_generate: bool
template: "Template"
generating_args: Dict[str, Any]
@abstractmethod
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None: ...
@abstractmethod
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]: ...
@abstractmethod
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]: ...
@abstractmethod
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]: ...

View File

@@ -1,124 +1,50 @@
from dataclasses import dataclass
from threading import Thread
from typing import Any, Dict, Generator, List, Literal, Optional, Sequence, Tuple
import asyncio
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
import torch
from transformers import GenerationConfig, TextIteratorStreamer
from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_logits_processor
from ..hparams import get_infer_args
from ..model import dispatch_model, load_model_and_tokenizer
from .hf_engine import HuggingfaceEngine
from .vllm_engine import VllmEngine
@dataclass
class Response:
response_text: str
response_length: int
prompt_length: int
finish_reason: Literal["stop", "length"]
if TYPE_CHECKING:
from .base_engine import BaseEngine, Response
class ChatModel:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
self.can_generate = finetuning_args.stage == "sft"
self.model, self.tokenizer = load_model_and_tokenizer(
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
)
self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.model = dispatch_model(self.model)
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
if model_args.infer_backend == "hf":
self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
elif model_args.infer_backend == "vllm":
self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args)
else:
raise NotImplementedError("Unknown backend: {}".format(model_args.infer_backend))
def _process_args(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> Tuple[Dict[str, Any], int]:
paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
)
prompt_length = len(prompt)
input_ids = torch.tensor([prompt], device=self.model.device)
def _get_event_loop():
try:
return asyncio.get_running_loop()
except RuntimeError:
return asyncio.new_event_loop()
do_sample = input_kwargs.pop("do_sample", None)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
generating_args = self.generating_args.to_dict()
generating_args.update(
dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id,
)
)
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
generating_args["do_sample"] = True
if max_length:
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=input_ids,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor(),
)
return gen_kwargs, prompt_length
@torch.inference_mode()
def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List[Response]:
if not self.can_generate:
raise ValueError("The current model does not support `chat`.")
) -> List["Response"]:
loop = self._get_event_loop()
return loop.run_until_complete(self.achat(messages, system, tools, **input_kwargs))
gen_kwargs, prompt_length = self._process_args(messages, system, tools, **input_kwargs)
generate_output = self.model.generate(**gen_kwargs)
response_ids = generate_output[:, prompt_length:]
response = self.tokenizer.batch_decode(
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
results = []
for i in range(len(response)):
eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero()
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
results.append(
Response(
response_text=response[i],
response_length=response_length,
prompt_length=prompt_length,
finish_reason="stop" if len(eos_index) else "length",
)
)
async def achat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
return await self.engine.chat(messages, system, tools, **input_kwargs)
return results
@torch.inference_mode()
def stream_chat(
self,
messages: Sequence[Dict[str, str]],
@@ -126,44 +52,35 @@ class ChatModel:
tools: Optional[str] = None,
**input_kwargs,
) -> Generator[str, None, None]:
if not self.can_generate:
raise ValueError("The current model does not support `stream_chat`.")
loop = self._get_event_loop()
generator = self.astream_chat(messages, system, tools, **input_kwargs)
while True:
try:
yield loop.run_until_complete(generator.__anext__())
except StopAsyncIteration:
break
gen_kwargs, _ = self._process_args(messages, system, tools, **input_kwargs)
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs["streamer"] = streamer
async def astream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
async for new_token in self.engine.stream_chat(messages, system, tools, **input_kwargs):
yield new_token
thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
thread.start()
def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
loop = self._get_event_loop()
return loop.run_until_complete(self.aget_scores(batch_input, **input_kwargs))
yield from streamer
@torch.inference_mode()
def get_scores(self, batch_input: List[str], **input_kwargs) -> List[float]:
if self.can_generate:
raise ValueError("Cannot get scores using an auto-regressive model.")
max_length = input_kwargs.pop("max_length", None)
device = getattr(self.model.pretrained_model, "device", "cuda")
inputs = self.tokenizer(
batch_input,
padding=True,
truncation=True,
max_length=max_length or getattr(self.model.config, "max_position_embeddings", 1024),
return_tensors="pt",
add_special_tokens=True,
).to(device)
input_ids: torch.Tensor = inputs["input_ids"]
_, _, values = self.model(**inputs, output_hidden_states=True, return_dict=True)
if getattr(self.model.config, "model_type", None) == "chatglm":
values = torch.transpose(values, 0, 1)
scores = []
for i in range(input_ids.size(0)):
end_indexes = (input_ids[i] != self.tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
scores.append(values[i, end_index].nan_to_num().item())
return scores
async def aget_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
return await self.engine.get_scores(batch_input, **input_kwargs)

View File

@@ -0,0 +1,261 @@
import asyncio
import concurrent.futures
import os
from threading import Thread
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple
import torch
from transformers import GenerationConfig, TextIteratorStreamer
from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_logits_processor
from ..model import load_model_and_tokenizer
from .base_engine import BaseEngine, Response
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer
from trl import PreTrainedModelWrapper
from ..data import Template
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
class HuggingfaceEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
self.can_generate = finetuning_args.stage == "sft"
self.model, self.tokenizer = load_model_and_tokenizer(
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
)
self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
self._semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
@staticmethod
def _process_args(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
template: "Template",
generating_args: Dict[str, Any],
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
input_kwargs: Optional[Dict[str, Any]] = {},
) -> Tuple[Dict[str, Any], int]:
paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt_ids, _ = template.encode_oneturn(
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
)
prompt_length = len(prompt_ids)
inputs = torch.tensor([prompt_ids], device=model.device)
do_sample = input_kwargs.pop("do_sample", None)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
generating_args.update(
dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
pad_token_id=tokenizer.pad_token_id,
)
)
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
generating_args["do_sample"] = True
if max_length:
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=inputs,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor(),
)
return gen_kwargs, prompt_length
@staticmethod
@torch.inference_mode()
def _chat(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
template: "Template",
generating_args: Dict[str, Any],
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
input_kwargs: Optional[Dict[str, Any]] = {},
) -> List["Response"]:
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
)
generate_output = model.generate(**gen_kwargs)
response_ids = generate_output[:, prompt_length:]
response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
results = []
for i in range(len(response)):
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
results.append(
Response(
response_text=response[i],
response_length=response_length,
prompt_length=prompt_length,
finish_reason="stop" if len(eos_index) else "length",
)
)
return results
@staticmethod
@torch.inference_mode()
def _stream_chat(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
template: "Template",
generating_args: Dict[str, Any],
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
input_kwargs: Optional[Dict[str, Any]] = {},
) -> Callable[[], str]:
gen_kwargs, _ = HuggingfaceEngine._process_args(
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
def stream():
try:
return streamer.__next__()
except StopIteration:
raise StopAsyncIteration()
return stream
@staticmethod
@torch.inference_mode()
def _get_scores(
model: "PreTrainedModelWrapper",
tokenizer: "PreTrainedTokenizer",
batch_input: List[str],
input_kwargs: Optional[Dict[str, Any]] = {},
) -> List[float]:
max_length = input_kwargs.pop("max_length", None)
device = getattr(model.pretrained_model, "device", "cuda")
inputs = tokenizer(
batch_input,
padding=True,
truncation=True,
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
return_tensors="pt",
add_special_tokens=True,
).to(device)
input_ids: torch.Tensor = inputs["input_ids"]
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
if getattr(model.config, "model_type", None) == "chatglm":
values = torch.transpose(values, 0, 1)
scores = []
for i in range(input_ids.size(0)):
end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
scores.append(values[i, end_index].nan_to_num().item())
return scores
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
if not self.can_generate:
raise ValueError("The current model does not support `chat`.")
loop = asyncio.get_running_loop()
input_args = (
self.model,
self.tokenizer,
self.template,
self.generating_args,
messages,
system,
tools,
input_kwargs,
)
async with self._semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
return await loop.run_in_executor(pool, self._chat, *input_args)
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
if not self.can_generate:
raise ValueError("The current model does not support `stream_chat`.")
loop = asyncio.get_running_loop()
input_args = (
self.model,
self.tokenizer,
self.template,
self.generating_args,
messages,
system,
tools,
input_kwargs,
)
async with self._semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
stream = self._stream_chat(*input_args)
while True:
try:
yield await loop.run_in_executor(pool, stream)
except StopAsyncIteration:
break
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
if self.can_generate:
raise ValueError("Cannot get scores using an auto-regressive model.")
loop = asyncio.get_running_loop()
input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
async with self._semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
return await loop.run_in_executor(pool, self._get_scores, *input_args)

View File

@@ -0,0 +1,144 @@
import uuid
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
from transformers.utils.versions import require_version
from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_device_count
from ..extras.packages import is_vllm_available
from ..model import load_tokenizer
from .base_engine import BaseEngine, Response
if is_vllm_available():
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
if TYPE_CHECKING:
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
class VllmEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
require_version("vllm>=0.3.3", "To fix: pip install vllm>=0.3.3")
self.can_generate = finetuning_args.stage == "sft"
engine_args = AsyncEngineArgs(
model=model_args.model_name_or_path,
trust_remote_code=True,
max_model_len=model_args.vllm_maxlen,
tensor_parallel_size=get_device_count(),
disable_log_stats=True,
disable_log_requests=True,
)
self.model = AsyncLLMEngine.from_engine_args(engine_args)
self.tokenizer = load_tokenizer(model_args)
self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
async def _generate(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncIterator["RequestOutput"]:
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt_ids, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
)
prompt_length = len(prompt_ids)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
generating_args = self.generating_args.copy()
generating_args.update(
dict(
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
)
)
if max_length:
generating_args["max_new_tokens"] = max_length - prompt_length
if max_new_tokens:
generating_args["max_new_tokens"] = max_new_tokens
sampling_params = SamplingParams(
n=generating_args["num_return_sequences"],
repetition_penalty=generating_args["repetition_penalty"],
temperature=generating_args["temperature"],
top_p=generating_args["top_p"],
top_k=generating_args["top_k"],
use_beam_search=generating_args["num_beams"] > 1,
length_penalty=generating_args["length_penalty"],
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
max_tokens=generating_args["max_new_tokens"],
skip_special_tokens=True,
)
result_generator = self.model.generate(
prompt=None, sampling_params=sampling_params, request_id=request_id, prompt_token_ids=prompt_ids
)
return result_generator
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
final_output = None
generator = await self._generate(messages, system, tools, **input_kwargs)
async for request_output in generator:
final_output = request_output
results = []
for output in final_output.outputs:
results.append(
Response(
response_text=output.text,
response_length=len(output.token_ids),
prompt_length=len(final_output.prompt_token_ids),
finish_reason=output.finish_reason,
)
)
return results
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
generated_text = ""
generator = await self._generate(messages, system, tools, **input_kwargs)
async for result in generator:
delta_text = result.outputs[0].text[len(generated_text) :]
generated_text = result.outputs[0].text
yield delta_text
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
raise NotImplementedError("vLLM engine does not support get_scores.")