[model] support audio (#6701)

* support qwen2_audio

* improve code

* lint

* fix

* fix

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 24c7842948
This commit is contained in:
Zhangchi Feng
2025-02-05 04:59:09 +08:00
committed by GitHub
parent e665e1fed5
commit 01915eaf40
37 changed files with 736 additions and 213 deletions

View File

@@ -25,57 +25,33 @@ if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from ..hparams import DataArguments
from .mm_plugin import ImageInput, VideoInput
from .parser import DatasetAttr
logger = logging.get_logger(__name__)
def _convert_images(
images: Union["ImageInput", Sequence["ImageInput"]],
def _regularize_medias(
inputs: Union[Any, Sequence[Any]],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Optional[List["ImageInput"]]:
) -> Optional[List[Any]]:
r"""
Optionally concatenates image path to dataset dir when loading from local disk.
Optionally concatenates media path to media dir when loading from local disk.
"""
if not isinstance(images, list):
images = [images]
elif len(images) == 0:
if not isinstance(inputs, list):
inputs = [inputs]
elif len(inputs) == 0:
return None
else:
images = images[:]
inputs = inputs[:]
if dataset_attr.load_from in ["script", "file"]:
for i in range(len(images)):
if isinstance(images[i], str) and os.path.isfile(os.path.join(data_args.image_dir, images[i])):
images[i] = os.path.join(data_args.image_dir, images[i])
for i in range(len(inputs)):
if isinstance(inputs[i], str) and os.path.isfile(os.path.join(data_args.media_dir, inputs[i])):
inputs[i] = os.path.join(data_args.media_dir, inputs[i])
return images
def _convert_videos(
videos: Union["VideoInput", Sequence["VideoInput"]],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Optional[List["VideoInput"]]:
r"""
Optionally concatenates video path to dataset dir when loading from local disk.
"""
if not isinstance(videos, list):
videos = [videos]
elif len(videos) == 0:
return None
else:
videos = videos[:]
if dataset_attr.load_from in ["script", "file"]:
for i in range(len(videos)):
if isinstance(videos[i], str) and os.path.isfile(os.path.join(data_args.image_dir, videos[i])):
videos[i] = os.path.join(data_args.image_dir, videos[i])
return videos
return inputs
def convert_alpaca(
@@ -121,15 +97,15 @@ def convert_alpaca(
else: # unsupervised
response = []
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
regularize_medias = partial(_regularize_medias, dataset_attr=dataset_attr, data_args=data_args)
output = {
"_prompt": prompt,
"_response": response,
"_system": example[dataset_attr.system] if dataset_attr.system else "",
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
"_images": regularize_medias(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": regularize_medias(example[dataset_attr.videos]) if dataset_attr.videos else None,
"_audios": regularize_medias(example[dataset_attr.audios]) if dataset_attr.audios else None,
}
return output
@@ -214,15 +190,15 @@ def convert_sharegpt(
logger.warning_rank0("Skipping this abnormal example.")
prompt, response = [], []
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
regularize_medias = partial(_regularize_medias, dataset_attr=dataset_attr, data_args=data_args)
output = {
"_prompt": prompt,
"_response": response,
"_system": system,
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
"_images": regularize_medias(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": regularize_medias(example[dataset_attr.videos]) if dataset_attr.videos else None,
"_audios": regularize_medias(example[dataset_attr.audios]) if dataset_attr.audios else None,
}
return output
@@ -241,6 +217,7 @@ def align_dataset(
_tools: "...",
_images: [],
_videos: [],
_audios: [],
"""
if dataset_attr.formatting == "alpaca":
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)

View File

@@ -18,11 +18,12 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence
import numpy as np
import torch
import torch.nn.functional as F
from transformers import DataCollatorForSeq2Seq
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
from ..extras.packages import is_pillow_available
@@ -80,7 +81,7 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
r"""
Data collator that supports VLMs.
Features should contain input_ids, attention_mask, labels, and optionally contain images and videos.
Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios.
"""
template: Optional["Template"] = None
@@ -91,26 +92,54 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
raise ValueError("Template is required for MultiModalDataCollator.")
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], []
batch_images, batch_videos, batch_audios = [], [], []
batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
for feature in features:
images = feature.pop("images", None) or []
videos = feature.pop("videos", None) or []
audios = feature.pop("audios", None) or []
batch_images.extend(images)
batch_videos.extend(videos)
batch_audios.extend(audios)
batch_imglens.append(len(images))
batch_vidlens.append(len(videos))
batch_audlens.append(len(audios))
batch_input_ids.append(feature["input_ids"])
fake_input_ids = None
if (
self.processor is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
): # avoid process hanging in zero3/fsdp case
fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
fake_messages = self.template.mm_plugin.process_messages(fake_messages, fake_images, [], self.processor)
fake_messages = self.template.mm_plugin.process_messages(
fake_messages, fake_images, [], [], self.processor
)
fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
fake_input_ids, None, fake_images, [], self.tokenizer, self.processor
fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor
)
batch_images = fake_images
batch_imglens[0] = 1
batch_input_ids[0] = features[0]["input_ids"]
if (
self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0
): # avoid process hanging in zero3/fsdp case
fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}]
fake_audios = [np.zeros(1600)]
fake_messages = self.template.mm_plugin.process_messages(
fake_messages, [], [], fake_audios, self.processor
)
fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor
)
batch_audios = fake_audios
batch_audlens[0] = 1
batch_input_ids[0] = features[0]["input_ids"]
if fake_input_ids is not None:
if self.tokenizer.padding_side == "right":
features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
@@ -120,12 +149,15 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]
batch_images = fake_images
batch_imglens[0] = 1
batch_input_ids[0] = features[0]["input_ids"]
mm_inputs = self.template.mm_plugin.get_mm_inputs(
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids, self.processor
batch_images,
batch_videos,
batch_audios,
batch_imglens,
batch_vidlens,
batch_audlens,
batch_input_ids,
self.processor,
)
if "token_type_ids" in mm_inputs:
token_type_ids = mm_inputs.pop("token_type_ids")
@@ -208,6 +240,7 @@ class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
"labels": feature[f"{key}_labels"],
"images": feature["images"],
"videos": feature["videos"],
"audios": feature["audios"],
}
concatenated_features.append(target_feature)
@@ -231,6 +264,7 @@ class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
"labels": feature["labels"],
"images": feature["images"],
"videos": feature["videos"],
"audios": feature["audios"],
}
kl_feature = {
"input_ids": feature["kl_input_ids"],
@@ -238,6 +272,7 @@ class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
"labels": feature["kl_labels"],
"images": feature["images"],
"videos": feature["videos"],
"audios": feature["audios"],
}
target_features.append(target_feature)
kl_features.append(kl_feature)

View File

@@ -9,8 +9,17 @@ import torch
from transformers.image_utils import get_image_size, to_numpy_array
from typing_extensions import override
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import is_pillow_available, is_pyav_available, is_transformers_version_greater_than
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
is_librosa_available,
is_pillow_available,
is_pyav_available,
is_transformers_version_greater_than,
)
if is_librosa_available():
import librosa
if is_pillow_available():
@@ -31,7 +40,9 @@ if is_transformers_version_greater_than("4.45.0"):
if TYPE_CHECKING:
from av.stream import Stream
from numpy.typing import NDArray
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BaseImageProcessor
class EncodedImage(TypedDict):
@@ -40,6 +51,7 @@ if TYPE_CHECKING:
ImageInput = Union[str, bytes, EncodedImage, ImageObject]
VideoInput = str
AudioInput = Union[str, NDArray]
def _get_paligemma_token_type_ids(
@@ -60,15 +72,17 @@ def _get_paligemma_token_type_ids(
class BasePlugin:
def __init__(self, image_token: Optional[str], video_token: Optional[str]) -> None:
def __init__(self, image_token: Optional[str], video_token: Optional[str], audio_token: Optional[str]) -> None:
self.image_token = image_token
self.video_token = video_token
self.audio_token = audio_token
self.expand_mm_tokens = True
def _validate_input(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
) -> None:
r"""
Validates if this model accepts the input modalities.
@@ -83,11 +97,16 @@ class BasePlugin:
"This model does not support video input. Please check whether the correct `template` is used."
)
if len(audios) != 0 and self.audio_token is None:
raise ValueError(
"This model does not support audio input. Please check whether the correct `template` is used."
)
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
r"""
Pre-processes a single image.
"""
image_resolution: int = kwargs.get("image_resolution")
image_resolution: int = kwargs["image_resolution"]
if (image.width * image.height) > image_resolution:
resize_factor = math.sqrt(image_resolution / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
@@ -102,8 +121,8 @@ class BasePlugin:
r"""
Computes video sample frames according to fps.
"""
video_fps: float = kwargs.get("video_fps")
video_maxlen: int = kwargs.get("video_maxlen")
video_fps: float = kwargs["video_fps"]
video_maxlen: int = kwargs["video_maxlen"]
total_frames = video_stream.frames
sample_frames = float(video_stream.duration * video_stream.time_base) * video_fps
sample_frames = min(total_frames, video_maxlen, sample_frames)
@@ -126,7 +145,7 @@ class BasePlugin:
image = Image.open(image["path"])
if not isinstance(image, ImageObject):
raise ValueError(f"Expect input is a list of Images, but got {type(image)}.")
raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
results.append(self._preprocess_image(image, **kwargs))
@@ -154,10 +173,28 @@ class BasePlugin:
return results
def _regularize_audios(self, audios: Sequence["AudioInput"], **kwargs) -> List["NDArray"]:
r"""
Regularizes audios to avoid error. Including reading and resampling.
"""
results = []
sampling_rate = kwargs["sampling_rate"]
for audio in audios:
if isinstance(audio, str):
audio = librosa.load(audio, sr=sampling_rate)[0]
if not isinstance(audio, np.ndarray):
raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")
results.append(audio)
return results
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
r"""
@@ -172,15 +209,17 @@ class BasePlugin:
It holds num_patches == torch.prod(image_grid_thw)
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor", None)
video_processor: "BaseImageProcessor" = getattr(processor, "video_processor", image_processor)
input_dict = {"images": None} # default key
feature_extractor: "SequenceFeatureExtractor" = getattr(processor, "feature_extractor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 768 * 768),
)
input_dict["images"] = images
mm_inputs.update(image_processor(images, return_tensors="pt"))
if len(videos) != 0:
videos = self._regularize_videos(
@@ -189,16 +228,23 @@ class BasePlugin:
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
input_dict["videos"] = videos
mm_inputs.update(video_processor(videos, return_tensors="pt"))
mm_inputs = {}
if image_processor != video_processor:
if input_dict.get("images") is not None:
mm_inputs.update(image_processor(input_dict["images"], return_tensors="pt"))
if input_dict.get("videos") is not None:
mm_inputs.update(video_processor(input_dict["videos"], return_tensors="pt"))
elif input_dict.get("images") is not None or input_dict.get("videos") is not None: # same processor (qwen2-vl)
mm_inputs.update(image_processor(**input_dict, return_tensors="pt"))
if len(audios) != 0:
audios = self._regularize_audios(
audios,
sampling_rate=getattr(feature_extractor, "sampling_rate", 16000),
)
mm_inputs.update(
feature_extractor(
audios,
sampling_rate=getattr(feature_extractor, "sampling_rate", 16000),
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
)
)
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") # prevent conflicts
return mm_inputs
@@ -207,12 +253,13 @@ class BasePlugin:
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
r"""
Pre-processes input messages before tokenization for VLMs.
"""
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
return messages
def process_token_ids(
@@ -221,21 +268,24 @@ class BasePlugin:
labels: Optional[List[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
r"""
Pre-processes token ids after tokenization for VLMs.
"""
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
return input_ids, labels
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
@@ -247,10 +297,11 @@ class BasePlugin:
videos: a list of video inputs, shape (num_videos,)
imglens: number of images in each sample, shape (batch_size,)
vidlens: number of videos in each sample, shape (batch_size,)
audlens: number of audios in each sample, shape (batch_size,)
batch_ids: token ids of input samples, shape (batch_size, seq_len)
processor: a processor for pre-processing images and videos
"""
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
return {}
@@ -261,9 +312,10 @@ class LlavaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
image_seqlen = getattr(processor, "image_seqlen") if self.expand_mm_tokens else 1
messages = deepcopy(messages)
@@ -285,13 +337,15 @@ class LlavaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class LlavaNextPlugin(BasePlugin):
@@ -301,12 +355,13 @@ class LlavaNextPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "image_sizes" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"])
@@ -339,13 +394,15 @@ class LlavaNextPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class LlavaNextVideoPlugin(BasePlugin):
@@ -355,12 +412,13 @@ class LlavaNextVideoPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"])
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
@@ -408,13 +466,15 @@ class LlavaNextVideoPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class MiniCPMVPlugin(BasePlugin):
@@ -424,26 +484,30 @@ class MiniCPMVPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
num_video_tokens = 0
num_audio_tokens = 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
mm_inputs = {}
audio_inputs = {}
audio_parts = []
if len(images) != 0 and len(videos) != 0:
raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")
if len(videos) != 0:
max_slice_nums = 2
use_image_id = False
mm_inputs = self._get_mm_inputs([], videos, processor)
mm_inputs = self._get_mm_inputs([], videos, [], processor)
else:
max_slice_nums = image_processor.max_slice_nums
use_image_id = image_processor.use_image_id
for message in messages:
for i, message in enumerate(messages):
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
@@ -454,15 +518,25 @@ class MiniCPMVPlugin(BasePlugin):
content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
num_video_tokens += 1
message["content"] = content.replace("{{image}}", "(<image>./</image>)")
while AUDIO_PLACEHOLDER in content:
audio_parts.append(i)
content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
num_audio_tokens += 1
message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
"{{audio}}", "(<audio>./</audio>)"
)
if num_image_tokens > 0:
mm_inputs = self._get_mm_inputs(images, [], processor)
mm_inputs = self._get_mm_inputs(images, [], [], processor)
if num_audio_tokens > 0:
audio_parts_ls = [audio_parts]
audio_inputs = self._get_mm_inputs([], [], audios, processor, audio_parts_ls=audio_parts_ls, ret_phs=True)
if mm_inputs:
pattern = "(<image>./</image>)"
image_sizes = mm_inputs["image_sizes"]
for index, message in enumerate(messages):
text = message["content"]
image_tags = re.findall(pattern, text)
@@ -480,12 +554,29 @@ class MiniCPMVPlugin(BasePlugin):
final_text += text_chunks[-1]
messages[index]["content"] = final_text
if audio_inputs:
pattern = "(<audio>./</audio>)"
for index, message in enumerate(messages):
text = message["content"]
audio_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(audio_tags)):
audio_placeholder = audio_inputs["audio_phs"][0][i]
final_text = final_text + text_chunks[i] + audio_placeholder
final_text += text_chunks[-1]
messages[index]["content"] = final_text
if len(images) != num_image_tokens:
raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
if len(videos) != num_video_tokens:
raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
if len(audios) != num_audio_tokens:
raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")
return messages
@override
@@ -493,6 +584,7 @@ class MiniCPMVPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
) -> Dict[str, "torch.Tensor"]:
@@ -528,6 +620,30 @@ class MiniCPMVPlugin(BasePlugin):
video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
mm_inputs.update(video_inputs)
if len(audios) != 0:
audio_parts_ls = kwargs.get("audio_parts_ls", None)
new_audios = []
for audio in audios:
if not isinstance(audio, np.ndarray):
audio = librosa.load(audio, sr=processor.feature_extractor.sampling_rate)[0]
new_audios.append(audio)
audios_ls = []
idx = 0
for audio_parts in audio_parts_ls:
audios_ls.append(new_audios[idx : idx + len(audio_parts)])
idx += len(audio_parts)
audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
audios_ls,
audio_parts_ls,
chunk_input=True,
sampling_rate=16000,
)
mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
if kwargs.get("ret_phs", False):
mm_inputs.update({"audio_phs": audio_phs})
return mm_inputs
@override
@@ -535,12 +651,16 @@ class MiniCPMVPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
# image bound
image_bounds_list = []
valid_image_nums_ls = []
for i, input_ids in enumerate(batch_ids):
@@ -561,8 +681,38 @@ class MiniCPMVPlugin(BasePlugin):
)
image_bounds_list.append(image_bounds)
mm_inputs = self._get_mm_inputs(images, videos, processor, valid_image_nums_ls=valid_image_nums_ls)
mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
if "tgt_sizes" not in mm_inputs:
dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})
mm_inputs.update({"image_bound": image_bounds_list})
if len(audios) > 0:
# audio bound
audio_bounds_ls = []
spk_bounds_ls = []
audio_parts_ls = []
for input_ids, audiolen in zip(batch_ids, audlens):
input_ids_ = torch.tensor(input_ids)
audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
assert len(audio_start_idx) == len(audio_end_idx)
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
audio_bounds_ls.append(audio_bounds)
audio_parts_ls.append(list(range(audiolen)))
spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
assert len(spk_start_idx) == len(spk_end_idx)
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
spk_bounds_ls.append(spk_bounds)
audio_inputs = self._get_mm_inputs([], [], audios, processor, audio_parts_ls=audio_parts_ls)
mm_inputs.update(audio_inputs)
mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})
return mm_inputs
@@ -573,9 +723,10 @@ class MllamaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
@@ -593,6 +744,7 @@ class MllamaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
) -> Dict[str, "torch.Tensor"]:
@@ -617,17 +769,20 @@ class MllamaPlugin(BasePlugin):
return image_processor(batch_images, return_tensors="pt")
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor, imglens=imglens)
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens=imglens)
num_tiles = mm_inputs.pop("num_tiles")
image_token_id = getattr(processor, "image_token_id")
max_image_tiles = getattr(processor.image_processor, "max_image_tiles")
@@ -652,9 +807,10 @@ class PaliGemmaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
@@ -677,10 +833,11 @@ class PaliGemmaPlugin(BasePlugin):
labels: Optional[List[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen") if self.expand_mm_tokens else 0 # skip mm token
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
@@ -695,14 +852,16 @@ class PaliGemmaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
seqlens = [len(input_ids) for input_ids in batch_ids]
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
return mm_inputs
@@ -714,9 +873,10 @@ class PixtralPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
patch_size = getattr(processor, "patch_size")
image_token = getattr(processor, "image_token")
image_break_token = getattr(processor, "image_break_token")
@@ -724,7 +884,7 @@ class PixtralPlugin(BasePlugin):
num_image_tokens = 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_input_sizes = mm_inputs.get("image_sizes", None)
for message in messages:
content = message["content"]
@@ -759,13 +919,15 @@ class PixtralPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if mm_inputs.get("pixel_values"):
mm_inputs["pixel_values"] = mm_inputs["pixel_values"][0]
@@ -773,6 +935,58 @@ class PixtralPlugin(BasePlugin):
return mm_inputs
class Qwen2AudioPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos, audios)
bos_token: str = getattr(processor, "audio_bos_token")
eos_token: str = getattr(processor, "audio_eos_token")
mm_inputs = self._get_mm_inputs([], [], audios, processor)
if "feature_attention_mask" in mm_inputs:
audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
num_audio_tokens = 0
for message in messages:
content = message["content"]
while AUDIO_PLACEHOLDER in content:
audio_length = audio_lengths.pop(0)
input_length = (audio_length - 1) // 2 + 1
audio_seqlen = (input_length - 2) // 2 + 1 if self.expand_mm_tokens else 1
content = content.replace(
AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
)
num_audio_tokens += 1
message["content"] = content
if len(audios) != num_audio_tokens:
raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class Qwen2vlPlugin(BasePlugin):
@override
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
@@ -820,12 +1034,13 @@ class Qwen2vlPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
@@ -868,13 +1083,15 @@ class Qwen2vlPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
if "second_per_grid_ts" in getattr(image_processor, "model_input_names", []) and "video_grid_thw" in mm_inputs:
video_fps = getattr(processor, "video_fps", 2.0)
@@ -892,12 +1109,13 @@ class VideoLlavaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
num_frames = 0
has_images = "pixel_values_images" in mm_inputs
has_videos = "pixel_values_videos" in mm_inputs
@@ -945,13 +1163,15 @@ class VideoLlavaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
PLUGINS = {
@@ -963,6 +1183,7 @@ PLUGINS = {
"mllama": MllamaPlugin,
"paligemma": PaliGemmaPlugin,
"pixtral": PixtralPlugin,
"qwen2_audio": Qwen2AudioPlugin,
"qwen2_vl": Qwen2vlPlugin,
"video_llava": VideoLlavaPlugin,
}
@@ -972,9 +1193,10 @@ def get_mm_plugin(
name: str,
image_token: Optional[str] = None,
video_token: Optional[str] = None,
audio_token: Optional[str] = None,
) -> "BasePlugin":
plugin_class = PLUGINS.get(name, None)
if plugin_class is None:
raise ValueError(f"Multimodal plugin `{name}` not found.")
return plugin_class(image_token, video_token)
return plugin_class(image_token, video_token, audio_token)

View File

@@ -44,6 +44,7 @@ class DatasetAttr:
tools: Optional[str] = None
images: Optional[str] = None
videos: Optional[str] = None
audios: Optional[str] = None
# rlhf columns
chosen: Optional[str] = None
rejected: Optional[str] = None
@@ -135,7 +136,7 @@ def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -
dataset_attr.set_attr("num_samples", dataset_info[name])
if "columns" in dataset_info[name]:
column_names = ["system", "tools", "images", "videos", "chosen", "rejected", "kto_tag"]
column_names = ["system", "tools", "images", "videos", "audios", "chosen", "rejected", "kto_tag"]
if dataset_attr.formatting == "alpaca":
column_names.extend(["prompt", "query", "response", "history"])
else:

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -39,6 +39,7 @@ def _encode_feedback_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -56,8 +57,8 @@ def _encode_feedback_example(
else:
kl_messages = prompt + [kl_response[1]]
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, processor)
messages = template.mm_plugin.process_messages(messages, images, videos, audios, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, audios, processor)
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
@@ -65,8 +66,12 @@ def _encode_feedback_example(
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, videos, tokenizer, processor)
prompt_ids, _ = template.mm_plugin.process_token_ids(
prompt_ids, None, images, videos, audios, tokenizer, processor
)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(
kl_prompt_ids, None, images, videos, audios, tokenizer, processor
)
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
prompt_ids = prompt_ids[:source_len]
@@ -107,6 +112,7 @@ def preprocess_feedback_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -121,6 +127,7 @@ def preprocess_feedback_dataset(
model_inputs["kto_tags"].append(kto_tag)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -38,13 +38,14 @@ def _encode_pairwise_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
cutoff_len: int,
) -> Tuple[List[int], List[int], List[int], List[int]]:
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, processor)
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, processor)
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, audios, processor)
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, audios, processor)
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools)
_, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools)
@@ -52,7 +53,9 @@ def _encode_pairwise_example(
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
prompt_ids, _ = template.mm_plugin.process_token_ids(
prompt_ids, None, images, videos, audios, tokenizer, processor
)
# consider the response is more important
source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len)
prompt_ids = prompt_ids[:source_len]
@@ -89,6 +92,7 @@ def preprocess_pairwise_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -102,6 +106,7 @@ def preprocess_pairwise_dataset(
model_inputs["rejected_labels"].append(rejected_labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -38,6 +38,7 @@ def _encode_supervised_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -45,8 +46,8 @@ def _encode_supervised_example(
train_on_prompt: bool,
mask_history: bool,
) -> Tuple[List[int], List[int]]:
messages = template.mm_plugin.process_messages(prompt + response, images, videos, processor)
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, tokenizer, processor)
messages = template.mm_plugin.process_messages(prompt + response, images, videos, audios, processor)
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, audios, tokenizer, processor)
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools)
total_length = len(input_ids) + (1 if template.efficient_eos else 0)
if mask_history:
@@ -111,6 +112,7 @@ def preprocess_supervised_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -123,6 +125,7 @@ def preprocess_supervised_dataset(
model_inputs["labels"].append(labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs
@@ -138,7 +141,7 @@ def preprocess_packed_supervised_dataset(
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
valid_num = 0
batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], []
batch_input_ids, batch_labels, batch_images, batch_videos, batch_audios = [], [], [], [], []
lengths = []
length2indexes = defaultdict(list)
for i in range(len(examples["_prompt"])):
@@ -155,6 +158,7 @@ def preprocess_packed_supervised_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -172,19 +176,21 @@ def preprocess_packed_supervised_dataset(
batch_labels.append(labels)
batch_images.append(examples["_images"][i] or [])
batch_videos.append(examples["_videos"][i] or [])
batch_audios.append(examples["_audios"][i] or [])
valid_num += 1
model_inputs = defaultdict(list)
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) # reserved for the padding token
for knapsack in knapsacks:
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
packed_images, packed_videos = [], []
packed_images, packed_videos, packed_audios = [], [], []
for i, length in enumerate(knapsack):
index = length2indexes[length].pop()
packed_input_ids += batch_input_ids[index]
packed_labels += batch_labels[index]
packed_images += batch_images[index]
packed_videos += batch_videos[index]
packed_audios += batch_audios[index]
if data_args.neat_packing:
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1
else:
@@ -207,6 +213,7 @@ def preprocess_packed_supervised_dataset(
model_inputs["labels"].append(packed_labels)
model_inputs["images"].append(packed_images or None)
model_inputs["videos"].append(packed_videos or None)
model_inputs["audios"].append(packed_audios or None)
return model_inputs

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -38,6 +38,7 @@ def _encode_unsupervised_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -48,12 +49,12 @@ def _encode_unsupervised_example(
else:
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
messages = template.mm_plugin.process_messages(messages, images, videos, audios, processor)
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, tokenizer, processor)
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, audios, tokenizer, processor)
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
input_ids = input_ids[:source_len]
labels = labels[:target_len]
@@ -83,6 +84,7 @@ def preprocess_unsupervised_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -93,6 +95,7 @@ def preprocess_unsupervised_dataset(
model_inputs["labels"].append(labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs

View File

@@ -890,7 +890,7 @@ _register_template(
)
# copied from chatml template
# copied from qwen template
_register_template(
name="llava_next_qwen",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
@@ -979,7 +979,7 @@ _register_template(
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
stop_words=["<|im_end|>"],
mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>"),
mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>", audio_token="<audio>"),
)
@@ -1144,6 +1144,18 @@ _register_template(
# copied from chatml template
_register_template(
name="qwen2_audio",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
default_system="You are a helpful assistant.",
stop_words=["<|im_end|>"],
mm_plugin=get_mm_plugin(name="qwen2_audio", audio_token="<|AUDIO|>"),
)
# copied from qwen template
_register_template(
name="qwen2_vl",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),