Former-commit-id: c7e51ff187658eb472c2b234f75d8934c6f7c782
This commit is contained in:
hiyouga 2024-09-11 17:36:42 +08:00
parent 38505ae9e1
commit 009500bc6d
4 changed files with 12 additions and 22 deletions

View File

@ -229,8 +229,9 @@ async def create_stream_chat_completion_response(
async def create_score_evaluation_response(
request: "ScoreEvaluationRequest", chat_model: "ChatModel"
) -> "ScoreEvaluationResponse":
score_id = "scoreval-{}".format(uuid.uuid4().hex)
if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
return ScoreEvaluationResponse(model=request.model, scores=scores)
return ScoreEvaluationResponse(id=score_id, model=request.model, scores=scores)

View File

@ -246,29 +246,18 @@ class HuggingfaceEngine(BaseEngine):
batch_input: List[str],
input_kwargs: Optional[Dict[str, Any]] = {},
) -> List[float]:
max_length = input_kwargs.pop("max_length", None)
max_length: Optional[int] = input_kwargs.pop("max_length", None)
device = getattr(model.pretrained_model, "device", "cuda")
inputs = tokenizer(
inputs: Dict[str, "torch.Tensor"] = tokenizer(
batch_input,
padding=True,
truncation=True,
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
return_tensors="pt",
add_special_tokens=True,
add_special_tokens=False,
).to(device)
input_ids: torch.Tensor = inputs["input_ids"]
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
if getattr(model.config, "model_type", None) == "chatglm":
values = torch.transpose(values, 0, 1)
scores = []
for i in range(input_ids.size(0)):
end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
scores.append(values[i, end_index].nan_to_num().item())
values: "torch.Tensor" = model(**inputs, return_dict=True, use_cache=False)[-1]
scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1))
return scores
@override

View File

@ -31,7 +31,7 @@ if TYPE_CHECKING:
from trl import AutoModelForCausalLMWithValueHead
def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.Tensor]:
def get_rewards_from_server(server_url: str, messages: List[str]) -> List["torch.Tensor"]:
r"""
Gets reward scores from the API server.
"""
@ -66,7 +66,7 @@ def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["d
v_head_layer.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone().to(device)
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, "torch.Tensor"]:
r"""
Dumps the layernorm parameters in the model. The model is already unwrapped (and gathered).
"""
@ -79,7 +79,7 @@ def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
return layer_norm_params
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
r"""
Restores the layernorm parameters in the model. The model is already unwrapped (and gathered).
"""

View File

@ -392,7 +392,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
"""
if self.finetuning_args.reward_model_type == "api":
token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)]
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=False)
return get_rewards_from_server(self.reward_model, messages)
batch: Dict[str, "torch.Tensor"] = self.prepare_model_inputs(queries, responses)
@ -405,7 +405,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
reward_model = self.reward_model
with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context: # support bf16
_, _, values = reward_model(**batch, return_dict=True, use_cache=False)
values: "torch.Tensor" = reward_model(**batch, return_dict=True, use_cache=False)[-1]
if self.finetuning_args.reward_model_type == "lora":
replace_model(unwrapped_model, target="default")